"Fundamental domain의 면적에 대한 지겔의 정리"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
(피타고라스님이 이 페이지를 개설하였습니다.)
 
1번째 줄: 1번째 줄:
 +
<h5>간단한 소개</h5>
  
 +
*  
 +
 +
 
 +
 +
 
 +
 +
이제
 +
 +
<blockquote>
 +
<math>Area(U/N(\Gamma)) \ge \frac{\pi}{21}</math>
 +
</blockquote>
 +
 +
을 보이는 일이 남았다.
 +
 +
사람들은 유클리드 기하학이 가장 쉬운 기하학이라고 생각을 하지만, 삼각형의 넓이 구하는 일을 생각하면 꼭 그렇지가 않다. 초등학교에 가면 삼각형의 넓이 구하는 방법을 가르쳐주는데, 변의 길이를 적어도 하나는 꼭 알아야 한다. 그런데 hyperbolic geometry에서는 변의 길이를 알필요가 전혀 없다. '''각도가 모든 것을 결정한다'''!!! 삼각형의 세 각이 <math>\alpha, \beta, \gamma</math>로 주어져 있다면
 +
 +
<blockquote>
 +
<math> Area = \pi - \alpha- \beta- \gamma</math>
 +
</blockquote>
 +
 +
이제 Unit Disk를 겹치지 않으면서도 빽빽하게 채울수 있는 가장 작은 삼각형은 무엇인지를 알아야 할 필요가 있다. 이 문제는 풀려고 든다면 사실,
 +
 +
<blockquote>
 +
<math>1- (\frac{1}{l}+\frac{1}{m}+\frac{1}{n})</math>
 +
</blockquote>
 +
 +
를 0보다 크면서 동시에 가장 작게 만드는 자연수 l,m,n 를 찾는 것과 같게 된다.
 +
 +
정답은 바로 아래의 그림에 있다. 혹시나 이런 그림을 읽을줄 모르는 사람들을 오늘 이걸 잘 봐둬서 앞으로 이런 류의 그림을 볼때 편안한 마음을 가질수 있도록 한다.
 +
 +
 +
 +
그림에 있는 삼각형 한 조각을 들고 와서 각을 잰다. 어떻게 하면 되겠는가. 각을 재려는 점 주변에 삼각형이 몇개 있는지 세서 나누면 된다. 각각 4조각, 6조각, 14조각이 있다. 그러므로 각도는
 +
 +
<blockquote>
 +
<math> \frac{\pi}{2}, \frac{\pi}{3}, \frac{\pi}{7}</math>
 +
</blockquote>
 +
 +
로 주어진다. 이를 [http://en.wikipedia.org/wiki/%282,3,7%29_triangle_group (2,3,7) 삼각형]이라 부른다. 위의 넓이 공식에 의하면, 이 삼각형의 넓이는
 +
 +
<blockquote>
 +
<math> Area = \pi - \frac{\pi}{2}- \frac{\pi}{3}- \frac{\pi}{7}=\frac{\pi}{42}</math>
 +
</blockquote>
 +
 +
한 편 우리가 찾고 있는 것은 automorphisms of Riemann surface이므로 당연히 orientation을 보존하고 따라서 초록색타일과 검은색타일은 서로 섞일수가 없다. 따라서 fundamental domain의 넓이도
 +
 +
<blockquote>
 +
<math> \frac{\pi}{42}</math>
 +
</blockquote>
 +
 +
의 두배 이상은 되어야 한다. 즉
 +
 +
<blockquote>
 +
<math>Area(U/N(\Gamma)) \ge \frac{\pi}{21}</math>
 +
</blockquote>
 +
 +
 
 +
 +
<h5>하위주제들</h5>
 +
 +
 
 +
 +
 
 +
 +
 
 +
 +
==== 하위페이지 ====
 +
 +
* [[1964250|0 토픽용템플릿]]<br>
 +
** [[2060652|0 상위주제템플릿]]<br>
 +
 +
 
 +
 +
 
 +
 +
<h5>재미있는 사실</h5>
 +
 +
 
 +
 +
 
 +
 +
<h5>관련된 단원</h5>
 +
 +
 
 +
 +
 
 +
 +
<h5>많이 나오는 질문</h5>
 +
 +
*  네이버 지식인<br>
 +
** http://kin.search.naver.com/search.naver?where=kin_qna&query=
 +
 +
 
 +
 +
<h5>관련된 고교수학 또는 대학수학</h5>
 +
 +
 
 +
 +
 
 +
 +
<h5>관련된 다른 주제들</h5>
 +
 +
 
 +
 +
 
 +
 +
<h5>관련도서 및 추천도서</h5>
 +
 +
*  도서내검색<br>
 +
** http://books.google.com/books?q=
 +
** http://book.daum.net/search/contentSearch.do?query=
 +
*  도서검색<br>
 +
** http://www.amazon.com/s/ref=nb_ss_gw?url=search-alias%3Dstripbooks&field-keywords=
 +
** http://book.daum.net/search/mainSearch.do?query=
 +
 +
 
 +
 +
<h5>참고할만한 자료</h5>
 +
 +
* http://ko.wikipedia.org/wiki/
 +
* http://en.wikipedia.org/wiki/
 +
* http://viswiki.com/en/
 +
* http://front.math.ucdavis.edu/search?a=&t=&c=&n=40&s=Listings&q=
 +
* http://www.ams.org/mathscinet/search/publications.html?pg4=AUCN&s4=&co4=AND&pg5=TI&s5=&co5=AND&pg6=PC&s6=&co6=AND&pg7=ALLF&co7=AND&Submit=Search&dr=all&yrop=eq&arg3=&yearRangeFirst=&yearRangeSecond=&pg8=ET&s8=All&s7=
 +
* 다음백과사전 http://enc.daum.net/dic100/search.do?q=
 +
* [http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=&fstr= 대한수학회 수학 학술 용어집]
 +
 +
 
 +
 +
<h5>관련기사</h5>
 +
 +
*  네이버 뉴스 검색 (키워드 수정)<br>
 +
** http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
 +
** http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
 +
** http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
 +
** http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
 +
** http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
 +
 +
 
 +
 +
 
 +
 +
<h5>블로그</h5>
 +
 +
* 구글 블로그 검색 http://blogsearch.google.com/blogsearch?q=
 +
* 트렌비 블로그 검색 http://www.trenb.com/search.qst?q=
 +
 +
 
 +
 +
<h5>이미지 검색</h5>
 +
 +
* http://commons.wikimedia.org/w/index.php?title=Special%3ASearch&search=
 +
* http://images.google.com/images?q=
 +
* [http://www.artchive.com/ http://www.artchive.com]
 +
 +
 
 +
 +
<h5>동영상</h5>
 +
 +
* http://www.youtube.com/results?search_type=&search_query=

2009년 4월 21일 (화) 19:16 판

간단한 소개
  •  

 

 

이제

\(Area(U/N(\Gamma)) \ge \frac{\pi}{21}\)

을 보이는 일이 남았다.

사람들은 유클리드 기하학이 가장 쉬운 기하학이라고 생각을 하지만, 삼각형의 넓이 구하는 일을 생각하면 꼭 그렇지가 않다. 초등학교에 가면 삼각형의 넓이 구하는 방법을 가르쳐주는데, 변의 길이를 적어도 하나는 꼭 알아야 한다. 그런데 hyperbolic geometry에서는 변의 길이를 알필요가 전혀 없다. 각도가 모든 것을 결정한다!!! 삼각형의 세 각이 \(\alpha, \beta, \gamma\)로 주어져 있다면

\( Area = \pi - \alpha- \beta- \gamma\)

이제 Unit Disk를 겹치지 않으면서도 빽빽하게 채울수 있는 가장 작은 삼각형은 무엇인지를 알아야 할 필요가 있다. 이 문제는 풀려고 든다면 사실,

\(1- (\frac{1}{l}+\frac{1}{m}+\frac{1}{n})\)

를 0보다 크면서 동시에 가장 작게 만드는 자연수 l,m,n 를 찾는 것과 같게 된다.

정답은 바로 아래의 그림에 있다. 혹시나 이런 그림을 읽을줄 모르는 사람들을 오늘 이걸 잘 봐둬서 앞으로 이런 류의 그림을 볼때 편안한 마음을 가질수 있도록 한다.


그림에 있는 삼각형 한 조각을 들고 와서 각을 잰다. 어떻게 하면 되겠는가. 각을 재려는 점 주변에 삼각형이 몇개 있는지 세서 나누면 된다. 각각 4조각, 6조각, 14조각이 있다. 그러므로 각도는

\( \frac{\pi}{2}, \frac{\pi}{3}, \frac{\pi}{7}\)

로 주어진다. 이를 (2,3,7) 삼각형이라 부른다. 위의 넓이 공식에 의하면, 이 삼각형의 넓이는

\( Area = \pi - \frac{\pi}{2}- \frac{\pi}{3}- \frac{\pi}{7}=\frac{\pi}{42}\)

한 편 우리가 찾고 있는 것은 automorphisms of Riemann surface이므로 당연히 orientation을 보존하고 따라서 초록색타일과 검은색타일은 서로 섞일수가 없다. 따라서 fundamental domain의 넓이도

\( \frac{\pi}{42}\)

의 두배 이상은 되어야 한다. 즉

\(Area(U/N(\Gamma)) \ge \frac{\pi}{21}\)

 

하위주제들

 

 

 

하위페이지

 

 

재미있는 사실

 

 

관련된 단원

 

 

많이 나오는 질문

 

관련된 고교수학 또는 대학수학

 

 

관련된 다른 주제들

 

 

관련도서 및 추천도서

 

참고할만한 자료

 

관련기사

 

 

블로그

 

이미지 검색

 

동영상