"디리클레 L-함수의 미분"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
Pythagoras0 (토론 | 기여) 잔글 (찾아 바꾸기 – “네이버(.*)]” 문자열을 “” 문자열로) |
Pythagoras0 (토론 | 기여) |
||
1번째 줄: | 1번째 줄: | ||
− | + | ==개요== | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | + | ==리만제타함수== | |
− | |||
* [[리만제타함수]]<br>[[리만제타함수|리만제타함수]]<math>\zeta'(0)=-\log{\sqrt{2\pi}}</math><br> | * [[리만제타함수]]<br>[[리만제타함수|리만제타함수]]<math>\zeta'(0)=-\log{\sqrt{2\pi}}</math><br> | ||
19번째 줄: | 8번째 줄: | ||
− | + | ==디리클레 L-함수의 미분== | |
− | |||
− | |||
* <math>d_K</math>를 판별식으로 갖는 복소이차수체 <math>K</math>에 대하여, [[디리클레 L-함수]]는 다음을 만족시킴<br><math>L_{d_K}'(1)=\frac{2\pi h_K(\gamma+\ln 2\pi)}{w_K \cdot \sqrt{|d_K|}}-\frac{\pi}{\sqrt{|d_K|}}\sum_{(a,d_K)=1}\chi(a)\log\Gamma (\frac{a}{|d_K|})</math><br> | * <math>d_K</math>를 판별식으로 갖는 복소이차수체 <math>K</math>에 대하여, [[디리클레 L-함수]]는 다음을 만족시킴<br><math>L_{d_K}'(1)=\frac{2\pi h_K(\gamma+\ln 2\pi)}{w_K \cdot \sqrt{|d_K|}}-\frac{\pi}{\sqrt{|d_K|}}\sum_{(a,d_K)=1}\chi(a)\log\Gamma (\frac{a}{|d_K|})</math><br> | ||
29번째 줄: | 16번째 줄: | ||
− | + | ==예== | |
* [[디리클레 베타함수]]<br><math>K=\mathbb{Q}(i)</math><br><math>\beta'(1)=L_{-4}'(1)=\frac{\pi}{4}(\gamma+\ln 2\pi)-\frac{\pi}{2}\ln(\frac{\Gamma(1/4)}{\Gamma(3/4)})</math><br> | * [[디리클레 베타함수]]<br><math>K=\mathbb{Q}(i)</math><br><math>\beta'(1)=L_{-4}'(1)=\frac{\pi}{4}(\gamma+\ln 2\pi)-\frac{\pi}{2}\ln(\frac{\Gamma(1/4)}{\Gamma(3/4)})</math><br> | ||
36번째 줄: | 23번째 줄: | ||
− | + | ==재미있는 사실== | |
− | |||
− | |||
49번째 줄: | 34번째 줄: | ||
− | + | ==역사== | |
59번째 줄: | 44번째 줄: | ||
− | + | ==메모== | |
− | |||
− | |||
− | + | ==관련된 항목들== | |
− | |||
* [[Chowla-셀베르그 공식]]<br> | * [[Chowla-셀베르그 공식]]<br> | ||
* [[Birch and Swinnerton-Dyer 추측]]<br> | * [[Birch and Swinnerton-Dyer 추측]]<br> | ||
− | + | ||
− | + | ==수학용어번역== | |
− | |||
− | |||
* 단어사전 http://www.google.com/dictionary?langpair=en|ko&q= | * 단어사전 http://www.google.com/dictionary?langpair=en|ko&q= | ||
89번째 줄: | 69번째 줄: | ||
− | + | ==사전 형태의 자료== | |
* http://ko.wikipedia.org/wiki/ | * http://ko.wikipedia.org/wiki/ | ||
100번째 줄: | 80번째 줄: | ||
− | + | ==관련논문== | |
− | |||
− | |||
* http://www.jstor.org/action/doBasicSearch?Query= | * http://www.jstor.org/action/doBasicSearch?Query= | ||
112번째 줄: | 90번째 줄: | ||
− | + | ==관련도서== | |
* 도서내검색<br> | * 도서내검색<br> | ||
126번째 줄: | 104번째 줄: | ||
− | + | ==관련기사== | |
* 네이버 뉴스 검색 (키워드 수정)<br> | * 네이버 뉴스 검색 (키워드 수정)<br> | ||
135번째 줄: | 113번째 줄: | ||
− | + | ==블로그== | |
− | |||
− |
2012년 12월 13일 (목) 13:36 판
개요
리만제타함수
디리클레 L-함수의 미분
- \(d_K\)를 판별식으로 갖는 복소이차수체 \(K\)에 대하여, 디리클레 L-함수는 다음을 만족시킴
\(L_{d_K}'(1)=\frac{2\pi h_K(\gamma+\ln 2\pi)}{w_K \cdot \sqrt{|d_K|}}-\frac{\pi}{\sqrt{|d_K|}}\sum_{(a,d_K)=1}\chi(a)\log\Gamma (\frac{a}{|d_K|})\)
예
- 디리클레 베타함수
\(K=\mathbb{Q}(i)\)
\(\beta'(1)=L_{-4}'(1)=\frac{\pi}{4}(\gamma+\ln 2\pi)-\frac{\pi}{2}\ln(\frac{\Gamma(1/4)}{\Gamma(3/4)})\) - \(K=\mathbb{Q}(\omega)\), \(\omega^2+\omega+1=0\)
\(L_{-3}'(1)=\frac{\pi}{3\sqrt{3}}(\gamma+\ln 2\pi)-\frac{\pi}{\sqrt{3}}\ln(\frac{\Gamma(1/3)}{\Gamma(2/3)})\)
재미있는 사실
- Math Overflow http://mathoverflow.net/search?q=
- 네이버 지식인 http://kin.search.naver.com/search.naver?where=kin_qna&query=
역사
메모
관련된 항목들
수학용어번역
- 단어사전 http://www.google.com/dictionary?langpair=en%7Cko&q=
- 발음사전 http://www.forvo.com/search/
- 대한수학회 수학 학술 용어집
- 남·북한수학용어비교
- 대한수학회 수학용어한글화 게시판
사전 형태의 자료
- http://ko.wikipedia.org/wiki/
- http://en.wikipedia.org/wiki/
- http://www.wolframalpha.com/input/?i=
- NIST Digital Library of Mathematical Functions
- The On-Line Encyclopedia of Integer Sequences
관련논문
관련도서
- 도서내검색
- 도서검색
관련기사
- 네이버 뉴스 검색 (키워드 수정)