"겔폰드-슈나이더 정리"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
잔글 (찾아 바꾸기 – “==관련도서== * 도서내검색<br> ** http://books.google.com/books?q= ** http://book.daum.net/search/contentSearch.do?query= * 도서검색<br> ** http://books.google.com/books?q= ** http://book.daum.net/search/mainSearch.d)
잔글 (찾아 바꾸기 – “수학사연표” 문자열을 “수학사 연표” 문자열로)
48번째 줄: 48번째 줄:
 
* 힐버트 7번 문제
 
* 힐버트 7번 문제
 
* 1934년 해결
 
* 1934년 해결
* [[수학사연표 (역사)|수학사연표]]
+
* [[수학사 연표]]
  
 
 
 
 

2013년 1월 14일 (월) 14:31 판

이 항목의 스프링노트 원문주소

 

 

겔폰드-슈나이더 정리

(정리) 겔폰드-슈나이더, 1934

\(\alpha \ne 0\),\(\alpha \ne 1\),\(\beta\notin \mathbb{Q}\) 인 복소수 \(\alpha\)와 \(\beta\) 가 대수적수이면, \(\alpha^{\beta} =e^{\beta \log \alpha\) 는 초월수이다.

 

 

겔폰드 상수

  • \(e^\pi\) 를 겔폰드 상수라 함
  • \(e^\pi=(e^{i\pi})^{-i}=(-1)^{i}\)
  • 겔폰드 슈나이더 정리를 적용하면, 초월수임이 증명.

 

 

겔폰드-슈나이더 상수

  • \(2^{\sqrt2}\)
  • 겔폰드 슈나이더 정리를 적용하면, 초월수임이 증명.

 

 

또다른 예

  • \(e^{\pi \sqrt{163}}=(e^{-i\pi})^{\sqrt{-163}}=(-1)^{\sqrt{-163}}\) 이므로 초월수이다 숫자 163

 

 

역사

 

 

 

관련된 항목들

 

 

수학용어번역

 

 

사전 형태의 자료

 

 

 

관련논문

 


 

 

관련링크와 웹페이지

 

 

블로그