"P진 감마함수(p-adic gamma function)"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
7번째 줄: | 7번째 줄: | ||
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">간단한 소개</h5> | <h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">간단한 소개</h5> | ||
− | + | <math>\Gamma_p(n)=(-1)^n\prod_{(i,p)=1}^{n-1} i</math> | |
37번째 줄: | 37번째 줄: | ||
<h5>관련된 항목들</h5> | <h5>관련된 항목들</h5> | ||
− | + | * [[감마함수]] | |
69번째 줄: | 69번째 줄: | ||
* [http://www.springerlink.com/content/bq28602x02m17760/ p-adic gamma functions and their applications]<br> | * [http://www.springerlink.com/content/bq28602x02m17760/ p-adic gamma functions and their applications]<br> | ||
** Jack Diamond, 1984 | ** Jack Diamond, 1984 | ||
− | * [ | + | * [http://archive.numdam.org/ARCHIVE/GAU/GAU_1981-1982__9_3/GAU_1981-1982__9_3_A18_0/GAU_1981-1982__9_3_A18_0.pdf The p-adic gamma function and congruences of Atkin and. Swinnerton-Dyer]<br> |
+ | ** L. van Hamme, Groupe d'étude d'analyse ultramétrique, 9e année 81/82, Fasc. 3 no. J17-6p | ||
* [http://www.jstor.org/stable/1971226 Gauss Sums and the p-adic Γ-function]<br> | * [http://www.jstor.org/stable/1971226 Gauss Sums and the p-adic Γ-function]<br> | ||
** Benedict H. Gross and Neal Koblitz, The Annals of Mathematics, Second Series, Vol. 109, No. 3 (May, 1979), pp. 569-581 | ** Benedict H. Gross and Neal Koblitz, The Annals of Mathematics, Second Series, Vol. 109, No. 3 (May, 1979), pp. 569-581 | ||
+ | * The p-adic log gamma function and p-adic Euler constants<br> | ||
+ | ** J. Diamond, Trans. Amer. Math. Soc. 233 (1977), 321–337 | ||
* [http://hdl.handle.net/2261/6494 A p-adic analogue of the $\Gamma$-function]<br> | * [http://hdl.handle.net/2261/6494 A p-adic analogue of the $\Gamma$-function]<br> | ||
** Morita, Yasuo, Journal of the Faculty of Science, the University of Tokyo. Sect. 1 A, Mathematics, Vol.22(1975), No.2, Page 255-266 | ** Morita, Yasuo, Journal of the Faculty of Science, the University of Tokyo. Sect. 1 A, Mathematics, Vol.22(1975), No.2, Page 255-266 |
2009년 11월 11일 (수) 17:42 판
이 항목의 스프링노트 원문주소
간단한 소개
\(\Gamma_p(n)=(-1)^n\prod_{(i,p)=1}^{n-1} i\)
재미있는 사실
역사
메모
관련된 항목들
수학용어번역
사전 형태의 자료
- http://ko.wikipedia.org/wiki/
- http://en.wikipedia.org/wiki/
- http://www.wolframalpha.com/input/?i=
- NIST Digital Library of Mathematical Functions
- The On-Line Encyclopedia of Integer Sequences
관련논문
- p-adic gamma functions and their applications
- Jack Diamond, 1984
- The p-adic gamma function and congruences of Atkin and. Swinnerton-Dyer
- L. van Hamme, Groupe d'étude d'analyse ultramétrique, 9e année 81/82, Fasc. 3 no. J17-6p
- Gauss Sums and the p-adic Γ-function
- Benedict H. Gross and Neal Koblitz, The Annals of Mathematics, Second Series, Vol. 109, No. 3 (May, 1979), pp. 569-581
- The p-adic log gamma function and p-adic Euler constants
- J. Diamond, Trans. Amer. Math. Soc. 233 (1977), 321–337
- A p-adic analogue of the $\Gamma$-function
- Morita, Yasuo, Journal of the Faculty of Science, the University of Tokyo. Sect. 1 A, Mathematics, Vol.22(1975), No.2, Page 255-266
- http://www.jstor.org/action/doBasicSearch?Query=
- http://dx.doi.org/
관련도서 및 추천도서
- 도서내검색
- 도서검색
관련기사
- 네이버 뉴스 검색 (키워드 수정)