"호인 미분방정식(Heun's equation)"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
Pythagoras0 (토론 | 기여) 잔글 (찾아 바꾸기 – “<br><math>” 문자열을 “:<math>” 문자열로) |
Pythagoras0 (토론 | 기여) |
||
30번째 줄: | 30번째 줄: | ||
* http://www.google.com/search?hl=en&tbs=tl:1&q= | * http://www.google.com/search?hl=en&tbs=tl:1&q= | ||
− | * [[ | + | * [[수학사 연표]] |
* | * | ||
2013년 1월 14일 (월) 20:20 판
이 항목의 스프링노트 원문주소
개요
- 리만구면 상의 네 점\(0,1,d, \infty\)에서 정규특이점을 갖는 미분방정식\[\frac {d^2w}{dz^2} + \left[\frac{\gamma}{z}+ \frac{\delta}{z-1} + \frac{\epsilon}{z-d} \right] \frac {dw}{dz} + \frac {\alpha \beta z -q} {z(z-1)(z-d)} w = 0\]
여기서 \(\epsilon=\alpha+\beta-\gamma-\delta+1\)을 만족시킴(\(z=\infty\)에서의 정규성에 필요)
재미있는 사실
역사
메모
관련된 항목들
수학용어번역
사전 형태의 자료
- http://ko.wikipedia.org/wiki/
- http://en.wikipedia.org/wiki/Heun's_equation
- http://en.wikipedia.org/wiki/
- http://www.wolframalpha.com/input/?i=
- NIST Digital Library of Mathematical Functions
- The On-Line Encyclopedia of Integer Sequences
관련논문
- The 192 solutions of the Heun equation
- Robert S. Maier, Journal: Math. Comp. 76 (2007), 811-843
- http://www.jstor.org/action/doBasicSearch?Query=
- http://dx.doi.org/