"Q- Pfaff-Saalschütz 항등식"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
Pythagoras0 (토론 | 기여) 잔글 (찾아 바꾸기 – “==관련도서== * 도서내검색<br> ** http://books.google.com/books?q= ** http://book.daum.net/search/contentSearch.do?query=” 문자열을 “” 문자열로) |
Pythagoras0 (토론 | 기여) 잔글 (찾아 바꾸기 – “==관련논문== * http://www.jstor.org/action/doBasicSearch?Query= * http://www.ams.org/mathscinet * http://dx.doi.org/” 문자열을 “” 문자열로) |
||
77번째 줄: | 77번째 줄: | ||
− | |||
− | |||
− | |||
− | |||
2012년 11월 2일 (금) 07:40 판
이 항목의 수학노트 원문주소
개요
- [GR2004] (1.7.2) q-analogue of Pfaff-Saalschutz's summation formula
\(\, _3\phi _2\left(a,b,q^{-k};c,\frac{a b q^{1-k}}{c};q,q\right)=\frac{\left(\frac{c}{a};q\right)_k \left(\frac{c}{b};q\right)_k}{(c;q)_k \left(\frac{c}{a b};q\right)_k}\) or
\(\sum_{n=0}^{\infty}\frac{q^n (a;q)_n (b;q)_n \left(q^{-k};q\right)_n}{(q;q)_n (c;q)_n \left(\frac{a b q^{1-k}}{c};q\right)_n}=\frac{\left(\frac{c}{a};q\right)_k \left(\frac{c}{b};q\right)_k}{(c;q)_k \left(\frac{c}{a b};q\right)_k}\)
역사
메모
- Math Overflow http://mathoverflow.net/search?q=
관련된 항목들
수학용어번역
- 단어사전
- 발음사전 http://www.forvo.com/search/
- 대한수학회 수학 학술 용어집
- 한국통계학회 통계학 용어 온라인 대조표
- 남·북한수학용어비교
- 대한수학회 수학용어한글화 게시판
사전 형태의 자료
- http://ko.wikipedia.org/wiki/
- http://en.wikipedia.org/wiki/
- http://mathworld.wolfram.com/q-SaalschuetzSum.html
- The Online Encyclopaedia of Mathematics
리뷰논문, 에세이, 강의노트