"르벡 항등식"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
1번째 줄: 1번째 줄:
==이 항목의 수학노트 원문주소==
 
 
* [[르벡 항등식]]
 
 
 
 
 
 
 
 
 
==개요==
 
==개요==
  
37번째 줄: 29번째 줄:
  
 
==관련된 항목들==
 
==관련된 항목들==
 
 
 
 
 
 
 
==수학용어번역==
 
 
*  단어사전<br>
 
** http://www.google.com/dictionary?langpair=en|ko&q=
 
** http://ko.wiktionary.org/wiki/
 
* 발음사전 http://www.forvo.com/search/
 
* [http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=&fstr= 대한수학회 수학 학술 용어집]<br>
 
** http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=eng_term&fstr=
 
* [http://www.nktech.net/science/term/term_l.jsp?l_mode=cate&s_code_cd=MA 남·북한수학용어비교]
 
* [http://kms.or.kr/home/kor/board/bulletin_list_subject.asp?bulletinid=%7BD6048897-56F9-43D7-8BB6-50B362D1243A%7D&boardname=%BC%F6%C7%D0%BF%EB%BE%EE%C5%E4%B7%D0%B9%E6&globalmenu=7&localmenu=4 대한수학회 수학용어한글화 게시판]
 
  
 
 
 
 
80번째 줄: 57번째 줄:
  
 
* '''[Alladi&Gordon1993]'''[http://dx.doi.org/10.1016/0097-3165%2893%2990061-C Partition identities and a continued fraction of Ramanujan] ,Krishnaswami Alladi and Basil Gordon, 1993
 
* '''[Alladi&Gordon1993]'''[http://dx.doi.org/10.1016/0097-3165%2893%2990061-C Partition identities and a continued fraction of Ramanujan] ,Krishnaswami Alladi and Basil Gordon, 1993
* http://www.jstor.org/action/doBasicSearch?Query=
 
* http://www.ams.org/mathscinet
 
* http://dx.doi.org/
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
==링크==
 
  
* [http://www.ams.org/news/math-in-the-media/mathdigest-index Summaries of Media Coverage of Math]
 
 
[[분류:슬레이터 목록]]
 
[[분류:슬레이터 목록]]

2013년 2월 20일 (수) 08:15 판

개요

  • [Alladi&Gordon1993] 278&279p\[f(a,c)=\sum_{k\geq 0}\frac{a^{k}q^{k(k-1)/2}(-cq)_{k}}{(q)_{k}}\]
  • a=q, c=z일 때, 르벡 항등식 (Lebesgue's identity) 을 얻는다\[f(q,z)=\sum_{k\geq 0}\frac{q^{k}q^{k(k-1)/2}(-zq)_{k}}{(q)_{k}}=\sum_{k\geq 0}\frac{q^{k(k+1)/2}(-zq)_{k}}{(q)_{k}}=(-zq^2;q^2)_{\infty}(-q)_{\infty}=\prod_{m=1}^{\infty} (1+zq^{2m})(1+q^{m})\]

 

 

 

역사

 

 

 

메모

 

 

관련된 항목들

 

 

 

사전 형태의 자료

 

 

리뷰논문과 에세이

 

 

관련논문