"Q-series 의 공식 모음"의 두 판 사이의 차이
(피타고라스님이 이 페이지의 이름을 q-series 의 공식 모음로 바꾸었습니다.) |
|||
1번째 줄: | 1번째 줄: | ||
+ | <h5>이 항목의 수학노트 원문주소</h5> | ||
+ | * [[q-series 의 공식 모음]] | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | <h5>개요</h5> | ||
+ | |||
+ | * [[합공식의 q-analogue]]<br> | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | <math>\lim_{z\to\infty}\frac{(z)_{n}}{z^{n}}=(-1)^{n}q^{\frac{n(n-1)}{2}}</math> | ||
+ | |||
+ | <math>(q^{l+1};q)_{n}=\frac{(q;q)_{n+l}}{(q;q)_{l}}</math> or <math>(q^{l};q)_{n}=\frac{(q;q)_{n+l-1}}{(q;q)_{l-1}}</math> | ||
+ | |||
+ | <math>l\geq n</math>, <math>(q^{-l};q)_{n}=(-1)^nq^{n(n-1)/2-nl}(q^{l-n+1};q)_n=(-1)^nq^{n(n-1)/2-nl}\frac{(q;q)_{l}}{(q;q)_{l-n}}</math> | ||
+ | |||
+ | <math>(-q)_{n}=\frac{(q^2;q^2)_{n}}{(q;q)_{n}}</math> | ||
+ | |||
+ | <math>(-q;q)_{2n+1}=(-q)_{2n}(1+q^{2n+1})=\frac{(q^2;q^4)_{n}(q^4;q^4)_{n}}{(q;q^2)_{n}(q^2;q^2)_{n}}(1+q^{2n+1})</math> | ||
+ | |||
+ | <math>(q)_{2n}=(q;q^2)_{n}(q^2;q^2)_{n}</math> | ||
+ | |||
+ | <math>(-q)_{2n}=\frac{(q^2;q^2)_{2n}}{(q;q)_{2n}}=\frac{(q^2;q^4)_{n}(q^4;q^4)_{n}}{(q;q^2)_{n}(q^2;q^2)_{n}}</math> | ||
+ | |||
+ | <math>\frac{(-q)_{n}}{(q)_{2n}}=\frac{1}{(q;q^2)_{n}(q;q)_{n}}</math> | ||
+ | |||
+ | <math>(a)_{n+r}=(a)_{n}(aq^{n})_{r}</math> | ||
+ | |||
+ | <math>(-q;q^{2})_{n}=\frac{(-q;q)_{n}}{(-q^{2};q^{2})_{n}}=\frac{(q^{2};q^{2})_{n}(q^{2};q^{2})_{n}}{(q^{4};q^{4})_{n}(q;q)_{n}}=\frac{(q^{2};q^{4})_{n}}{(q^{1};q^{4})_{n}(q^{3};q^{4})_{n}}</math> | ||
+ | |||
+ | <math>(-q^2;q^{2})_{n}=\frac{(q^4;q^4)_{n}}{(q^2;q^2)_{n}}=\frac{1}{(q^2;q^4)_{n}}</math> | ||
+ | |||
+ | <math>W(q)=(-q)_{\infty}=\sum_{n\geq 0}\frac{q^{n(n+1)/2}}{(q)_{n}}=\frac{(q^{2};q^{2})_{\infty}}{(q;q)_{\infty}}</math> | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | <h5>q-이항정리</h5> | ||
+ | |||
+ | * [[q-이항정리]]<br> | ||
+ | * <br> 가우스 공식<br><math>\prod_{r=0}^{n-1}(1+zq^r)=(1+z)(1+zq)\cdots(1+zq^{n-1})= \sum_{r=0}^{n} \begin{bmatrix} n\\ r\end{bmatrix}_{q}q^{r(r-1)/2}z^r</math><br> | ||
+ | * 하이네 공식<br><math>\prod_{r=0}^{n-1}\frac{1}{1-zq^r}=\sum_{r=0}^{\infty} \begin{bmatrix} n+r-1\\ r\end{bmatrix}_{q} z^r</math><br> | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | <h5>무한곱 공식</h5> | ||
+ | |||
+ | * [[자코비 삼중곱(Jacobi triple product)]]<br><math>\sum_{n=-\infty}^\infty z^{n}q^{n^2}= \prod_{m=1}^\infty \left( 1 - q^{2m}\right) \left( 1 + zq^{2m-1}\right) \left( 1 + z^{-1}q^{2m-1}\right)</math><br> | ||
+ | * quintuple product identity<br> | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | <h5>역사</h5> | ||
+ | |||
+ | |||
+ | |||
+ | * http://www.google.com/search?hl=en&tbs=tl:1&q= | ||
+ | * [[수학사연표 (역사)|수학사연표]] | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | <h5>메모</h5> | ||
+ | |||
+ | |||
+ | |||
+ | * Math Overflow http://mathoverflow.net/search?q= | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | <h5>관련된 항목들</h5> | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | <h5>수학용어번역</h5> | ||
+ | |||
+ | * 단어사전<br> | ||
+ | ** http://translate.google.com/#en|ko| | ||
+ | ** http://ko.wiktionary.org/wiki/ | ||
+ | * 발음사전 http://www.forvo.com/search/ | ||
+ | * [http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=&fstr= 대한수학회 수학 학술 용어집]<br> | ||
+ | ** http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=eng_term&fstr= | ||
+ | * [http://www.kss.or.kr/pds/sec/dic.aspx 한국통계학회 통계학 용어 온라인 대조표] | ||
+ | * [http://cgi.postech.ac.kr/cgi-bin/cgiwrap/sand/terms/terms.cgi 한국물리학회 물리학 용어집 검색기] | ||
+ | * [http://www.nktech.net/science/term/term_l.jsp?l_mode=cate&s_code_cd=MA 남·북한수학용어비교] | ||
+ | * [http://kms.or.kr/home/kor/board/bulletin_list_subject.asp?bulletinid=%7BD6048897-56F9-43D7-8BB6-50B362D1243A%7D&boardname=%BC%F6%C7%D0%BF%EB%BE%EE%C5%E4%B7%D0%B9%E6&globalmenu=7&localmenu=4 대한수학회 수학용어한글화 게시판] | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | <h5>매스매티카 파일 및 계산 리소스</h5> | ||
+ | |||
+ | * | ||
+ | * http://www.wolframalpha.com/input/?i= | ||
+ | * http://functions.wolfram.com/ | ||
+ | * [http://dlmf.nist.gov/ NIST Digital Library of Mathematical Functions] | ||
+ | * [http://people.math.sfu.ca/%7Ecbm/aands/toc.htm Abramowitz and Stegun Handbook of mathematical functions] | ||
+ | * [http://www.research.att.com/%7Enjas/sequences/index.html The On-Line Encyclopedia of Integer Sequences] | ||
+ | * [http://numbers.computation.free.fr/Constants/constants.html Numbers, constants and computation] | ||
+ | * [https://docs.google.com/open?id=0B8XXo8Tve1cxMWI0NzNjYWUtNmIwZi00YzhkLTkzNzQtMDMwYmVmYmIxNmIw 매스매티카 파일 목록] | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | <h5>사전 형태의 자료</h5> | ||
+ | |||
+ | * http://ko.wikipedia.org/wiki/ | ||
+ | * http://en.wikipedia.org/wiki/ | ||
+ | * [http://eom.springer.de/default.htm The Online Encyclopaedia of Mathematics] | ||
+ | * [http://dlmf.nist.gov NIST Digital Library of Mathematical Functions] | ||
+ | * [http://eqworld.ipmnet.ru/ The World of Mathematical Equations] | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | <h5>리뷰논문, 에세이, 강의노트</h5> | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | <h5>관련논문</h5> | ||
+ | |||
+ | * http://www.jstor.org/action/doBasicSearch?Query= | ||
+ | * http://www.ams.org/mathscinet | ||
+ | * http://dx.doi.org/ | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | <h5>관련도서</h5> | ||
+ | |||
+ | * 도서내검색<br> | ||
+ | ** http://books.google.com/books?q= | ||
+ | ** http://book.daum.net/search/contentSearch.do?query= |
2012년 8월 15일 (수) 21:07 판
이 항목의 수학노트 원문주소
개요
\(\lim_{z\to\infty}\frac{(z)_{n}}{z^{n}}=(-1)^{n}q^{\frac{n(n-1)}{2}}\)
\((q^{l+1};q)_{n}=\frac{(q;q)_{n+l}}{(q;q)_{l}}\) or \((q^{l};q)_{n}=\frac{(q;q)_{n+l-1}}{(q;q)_{l-1}}\)
\(l\geq n\), \((q^{-l};q)_{n}=(-1)^nq^{n(n-1)/2-nl}(q^{l-n+1};q)_n=(-1)^nq^{n(n-1)/2-nl}\frac{(q;q)_{l}}{(q;q)_{l-n}}\)
\((-q)_{n}=\frac{(q^2;q^2)_{n}}{(q;q)_{n}}\)
\((-q;q)_{2n+1}=(-q)_{2n}(1+q^{2n+1})=\frac{(q^2;q^4)_{n}(q^4;q^4)_{n}}{(q;q^2)_{n}(q^2;q^2)_{n}}(1+q^{2n+1})\)
\((q)_{2n}=(q;q^2)_{n}(q^2;q^2)_{n}\)
\((-q)_{2n}=\frac{(q^2;q^2)_{2n}}{(q;q)_{2n}}=\frac{(q^2;q^4)_{n}(q^4;q^4)_{n}}{(q;q^2)_{n}(q^2;q^2)_{n}}\)
\(\frac{(-q)_{n}}{(q)_{2n}}=\frac{1}{(q;q^2)_{n}(q;q)_{n}}\)
\((a)_{n+r}=(a)_{n}(aq^{n})_{r}\)
\((-q;q^{2})_{n}=\frac{(-q;q)_{n}}{(-q^{2};q^{2})_{n}}=\frac{(q^{2};q^{2})_{n}(q^{2};q^{2})_{n}}{(q^{4};q^{4})_{n}(q;q)_{n}}=\frac{(q^{2};q^{4})_{n}}{(q^{1};q^{4})_{n}(q^{3};q^{4})_{n}}\)
\((-q^2;q^{2})_{n}=\frac{(q^4;q^4)_{n}}{(q^2;q^2)_{n}}=\frac{1}{(q^2;q^4)_{n}}\)
\(W(q)=(-q)_{\infty}=\sum_{n\geq 0}\frac{q^{n(n+1)/2}}{(q)_{n}}=\frac{(q^{2};q^{2})_{\infty}}{(q;q)_{\infty}}\)
q-이항정리
- q-이항정리
-
가우스 공식
\(\prod_{r=0}^{n-1}(1+zq^r)=(1+z)(1+zq)\cdots(1+zq^{n-1})= \sum_{r=0}^{n} \begin{bmatrix} n\\ r\end{bmatrix}_{q}q^{r(r-1)/2}z^r\) - 하이네 공식
\(\prod_{r=0}^{n-1}\frac{1}{1-zq^r}=\sum_{r=0}^{\infty} \begin{bmatrix} n+r-1\\ r\end{bmatrix}_{q} z^r\)
무한곱 공식
- 자코비 삼중곱(Jacobi triple product)
\(\sum_{n=-\infty}^\infty z^{n}q^{n^2}= \prod_{m=1}^\infty \left( 1 - q^{2m}\right) \left( 1 + zq^{2m-1}\right) \left( 1 + z^{-1}q^{2m-1}\right)\) - quintuple product identity
역사
메모
- Math Overflow http://mathoverflow.net/search?q=
관련된 항목들
수학용어번역
- 단어사전
- 발음사전 http://www.forvo.com/search/
- 대한수학회 수학 학술 용어집
- 한국통계학회 통계학 용어 온라인 대조표
- 한국물리학회 물리학 용어집 검색기
- 남·북한수학용어비교
- 대한수학회 수학용어한글화 게시판
매스매티카 파일 및 계산 리소스
- http://www.wolframalpha.com/input/?i=
- http://functions.wolfram.com/
- NIST Digital Library of Mathematical Functions
- Abramowitz and Stegun Handbook of mathematical functions
- The On-Line Encyclopedia of Integer Sequences
- Numbers, constants and computation
- 매스매티카 파일 목록
사전 형태의 자료
- http://ko.wikipedia.org/wiki/
- http://en.wikipedia.org/wiki/
- The Online Encyclopaedia of Mathematics
- NIST Digital Library of Mathematical Functions
- The World of Mathematical Equations
리뷰논문, 에세이, 강의노트
관련논문