"대수적 베테 가설 풀이(algebraic Bethe ansatz)"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
18번째 줄: 18번째 줄:
 
===모노드로미 행렬===
 
===모노드로미 행렬===
 
* 모노드로미 행렬
 
* 모노드로미 행렬
$T_0(\lambda )=\left(
+
$$
 +
T_0(\lambda )=\left(
 
\begin{array}{cc}
 
\begin{array}{cc}
 
  A(\lambda ) & B(\lambda ) \\
 
  A(\lambda ) & B(\lambda ) \\
 
  C(\lambda ) & D(\lambda )
 
  C(\lambda ) & D(\lambda )
 
\end{array}
 
\end{array}
\right)$
+
\right)
 +
$$
  
 
여기서 $V^{\otimes N}$에 작용하는 연산자 $A(\lambda ) ,B(\lambda ) , C(\lambda ) , D(\lambda )$ 는 다음과 같은 관계를 만족한다
 
여기서 $V^{\otimes N}$에 작용하는 연산자 $A(\lambda ) ,B(\lambda ) , C(\lambda ) , D(\lambda )$ 는 다음과 같은 관계를 만족한다
 
+
$$
$\begin{eqnarray}
+
\begin{eqnarray}
 
\left[ B(\lambda), B(\lambda') \right] \ &=& 0 \\
 
\left[ B(\lambda), B(\lambda') \right] \ &=& 0 \\
 
A(\lambda)\ B(\lambda') &=& {a(\lambda' - \lambda)\over b(\lambda' - \lambda)}
 
A(\lambda)\ B(\lambda') &=& {a(\lambda' - \lambda)\over b(\lambda' - \lambda)}
 
B(\lambda')\ A(\lambda) - {c(\lambda' - \lambda)\over b(\lambda' - \lambda)} B(\lambda)\ A(\lambda') \\
 
B(\lambda')\ A(\lambda) - {c(\lambda' - \lambda)\over b(\lambda' - \lambda)} B(\lambda)\ A(\lambda') \\
 
 
D(\lambda)\ B(\lambda') &=& {a(\lambda - \lambda')\over b(\lambda - \lambda')}B(\lambda')\ D(\lambda) -  
 
D(\lambda)\ B(\lambda') &=& {a(\lambda - \lambda')\over b(\lambda - \lambda')}B(\lambda')\ D(\lambda) -  
 
{c(\lambda - \lambda')\over b(\lambda - \lambda')} B(\lambda)\ D(\lambda')
 
{c(\lambda - \lambda')\over b(\lambda - \lambda')} B(\lambda)\ D(\lambda')
\end{eqnarray}$
+
\end{eqnarray}
 +
$$
  
  

2013년 2월 28일 (목) 10:14 판

하이젠베르크 XXX 스핀 고리 모형

해밀토니안

  • 해밀토니안 $$H = \sum_{n=1}^{N-1}H_{n,n+1}+H_{N,1}\label{ham}$$ 여기서 $H_{i,j}$ 는 two-site 해밀토니안으로 다음과 같이 정의됨$$H_{i,j}=\frac{J}{4}(\sigma_i^x \sigma_{j}^x +\sigma_i^y \sigma_{j}^y + \sigma_i^z \sigma_{j}^z-I^{\otimes N})$$
    • J>0 는 antiferromagnet 의 모형
    • J<0 는 ferromagnet 의 모형
  • 해밀토니안을 대각화하는 문제에 베테안싸쯔가 사용된다
  • R-matrix $$\left( \begin{array}{cccc} a & 0 & 0 & 0 \\ 0 & b & c & 0 \\ 0 & c & b & 0 \\ 0 & 0 & 0 & a \end{array} \right)$$

여기서 $a=\lambda +i, b=\lambda, c=i$.


모노드로미 행렬

  • 모노드로미 행렬

$$ T_0(\lambda )=\left( \begin{array}{cc} A(\lambda ) & B(\lambda ) \\ C(\lambda ) & D(\lambda ) \end{array} \right) $$

여기서 $V^{\otimes N}$에 작용하는 연산자 $A(\lambda ) ,B(\lambda ) , C(\lambda ) , D(\lambda )$ 는 다음과 같은 관계를 만족한다 $$ \begin{eqnarray} \left[ B(\lambda), B(\lambda') \right] \ &=& 0 \\ A(\lambda)\ B(\lambda') &=& {a(\lambda' - \lambda)\over b(\lambda' - \lambda)} B(\lambda')\ A(\lambda) - {c(\lambda' - \lambda)\over b(\lambda' - \lambda)} B(\lambda)\ A(\lambda') \\ D(\lambda)\ B(\lambda') &=& {a(\lambda - \lambda')\over b(\lambda - \lambda')}B(\lambda')\ D(\lambda) - {c(\lambda - \lambda')\over b(\lambda - \lambda')} B(\lambda)\ D(\lambda') \end{eqnarray} $$


베테안싸쯔 방정식

  • 다음의 방정식을 베테안싸쯔 방정식이라 한다

$$\begin{eqnarray}\label{bae} \left( {\lambda_{\alpha} + {i\over 2} \over \lambda_{\alpha} - {i\over 2}} \right)^{N} = \prod_{\scriptstyle{\beta=1}\atop \scriptstyle{\beta \ne \alpha}}^M {\lambda_{\alpha} - \lambda_{\beta} + i \over \lambda_{\alpha} - \lambda_{\beta} - i } \,, \qquad \alpha = 1 \,, \cdots \,, M \,. \end{eqnarray}$$

  • 베테안싸쯔 방정식은 다음과 같이 표현되기도 한다

$$\exp(ik_jN)\prod_{i \neq j}^{M}S(k_j,k_i)=1$$ 여기서 $e^{i k_j}=\frac{\lambda_j+i/2}{\lambda_j-i/2}$ 또는 $\lambda_j=\frac{1}{2}\cot \frac{k_j}{2}$ 그리고 $$S(v,u)=\frac{u-v-i}{u-v+i}.$$

  • 베테안싸쯔 방정식 \ref{bae}의 해를 베테 해(Bethe roots)라 부르며, 각각의 베테 해로부터 해밀토니안 \ref{ham}의 고유벡터를 얻게 된다


격자 모형 : 6-vertex model

$$R(u,\eta)=\rho\left( \begin{array}{cccc} \sin (u+\eta ) & 0 & 0 & 0 \\ 0 & \sin (u) & \sin (\eta ) & 0 \\ 0 & \sin (\eta ) & \sin (u) & 0 \\ 0 & 0 & 0 & \sin (u+\eta ) \end{array} \right)$$


메모