"더블감마함수와 반스(Barnes) G-함수"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
잔글 (찾아 바꾸기 – “수학사연표” 문자열을 “수학사 연표” 문자열로)
1번째 줄: 1번째 줄:
==이 항목의 스프링노트 원문주소==
 
 
 
 
 
 
 
 
 
==개요==
 
==개요==
  
15번째 줄: 9번째 줄:
 
 
 
 
  
==근사식==
+
==점근급수==
 
+
* [[점근 급수(asymptotic series)]]
<math>\log G(z+1)=\frac{1}{12}~-~\log A~+~\frac{z}{2}\log 2\pi~+~\left(\frac{z^2}{2} -\frac{1}{12}\right)\log z~-~\frac{3z^2}{4}~+~ \sum_{k=1}^{N}\frac{B_{2k + 2}}{4k\left(k + 1\right)z^{2k}}~+~O\left(\frac{1}{z^{2N + 2}}\right)</math>
+
:<math>\log G(z+1)=\frac{1}{12}~-~\log A~+~\frac{z}{2}\log 2\pi~+~\left(\frac{z^2}{2} -\frac{1}{12}\right)\log z~-~\frac{3z^2}{4}~+~ \sum_{k=1}^{N}\frac{B_{2k + 2}}{4k\left(k + 1\right)z^{2k}}~+~O\left(\frac{1}{z^{2N + 2}}\right)</math>
  
 
여기서 A는 [[Glaisher–Kinkelin 상수]] <math>A= e^{\frac{1}{12}-\zeta^\prime(-1)}= 1.28242712\dots</math>
 
여기서 A는 [[Glaisher–Kinkelin 상수]] <math>A= e^{\frac{1}{12}-\zeta^\prime(-1)}= 1.28242712\dots</math>
37번째 줄: 31번째 줄:
 
==로그 삼각함수 적분과의 관계==
 
==로그 삼각함수 적분과의 관계==
  
<math>\int_{0}^{t}\pi u \cot \pi u\,du=t\log {2\pi}+\log \frac{G(1-t)}{G(1+t)}</math>
+
:<math>\int_{0}^{t}\pi u \cot \pi u\,du=t\log {2\pi}+\log \frac{G(1-t)}{G(1+t)}</math>
 
+
:<math>\int_{0}^{t}\log(\sin \pi u)\,du=t\log(\frac{\sin \pi t}{2\pi})+\log \frac{G(1+t)}{G(1-t)}</math>
<math>\int_{0}^{t}\log(\sin \pi u)\,du=t\log(\frac{\sin \pi t}{2\pi})+\log \frac{G(1+t)}{G(1-t)}</math>
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
==재미있는 사실==
 
  
 
 
 
 
 
* Math Overflow http://mathoverflow.net/search?q=
 
* 네이버 지식인 http://kin.search.naver.com/search.naver?where=kin_qna&query=
 
 
 
 
 
 
  
59번째 줄: 42번째 줄:
  
 
==역사==
 
==역사==
 
 
 
 
* http://www.google.com/search?hl=en&tbs=tl:1&q=
 
 
* [[수학사 연표]]
 
* [[수학사 연표]]
*  
 
 
 
 
  
 
 
 
 
87번째 줄: 63번째 줄:
  
 
==수학용어번역==
 
==수학용어번역==
 
+
* {{학술용어집|url=hyperfactorial}}
* 단어사전 http://www.google.com/dictionary?langpair=en|ko&q=hyperfactorial
 
 
* 발음사전 http://www.forvo.com/search/Barnes
 
* 발음사전 http://www.forvo.com/search/Barnes
* [http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=&fstr= 대한수학회 수학 학술 용어집]<br>
 
** http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=eng_term&fstr=hyperfactorial
 
** http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=eng_term&fstr=
 
* [http://www.nktech.net/science/term/term_l.jsp?l_mode=cate&s_code_cd=MA 남·북한수학용어비교]
 
* [http://kms.or.kr/home/kor/board/bulletin_list_subject.asp?bulletinid=%7BD6048897-56F9-43D7-8BB6-50B362D1243A%7D&boardname=%BC%F6%C7%D0%BF%EB%BE%EE%C5%E4%B7%D0%B9%E6&globalmenu=7&localmenu=4 대한수학회 수학용어한글화 게시판]
 
 
 
 
  
 
 
 
 
  
 
==사전 형태의 자료==
 
==사전 형태의 자료==
 
* http://ko.wikipedia.org/wiki/
 
 
* http://en.wikipedia.org/wiki/Barnes_G-function
 
* http://en.wikipedia.org/wiki/Barnes_G-function
 
* http://www.wolframalpha.com/input/?i=Barnes+G-function
 
* http://www.wolframalpha.com/input/?i=Barnes+G-function
 
* [http://dlmf.nist.gov/ NIST Digital Library of Mathematical Functions]<br>
 
* [http://dlmf.nist.gov/ NIST Digital Library of Mathematical Functions]<br>
 
** [http://dlmf.nist.gov/5.17 § 5.17. Barnes’ -Function (Double Gamma Function)]
 
** [http://dlmf.nist.gov/5.17 § 5.17. Barnes’ -Function (Double Gamma Function)]
* [http://www.research.att.com/~njas/sequences/index.html The On-Line Encyclopedia of Integer Sequences]<br>
 
** http://www.research.att.com/~njas/sequences/?q=
 
 
 
 
  
 
 
 
 
120번째 줄: 82번째 줄:
 
* [http://projecteuclid.org/euclid.tjm/1270472992 A Proof of the Classical Kronecker Limit Formula]<br>
 
* [http://projecteuclid.org/euclid.tjm/1270472992 A Proof of the Classical Kronecker Limit Formula]<br>
 
**  Takuro SHINTANI. Source: Tokyo J. of Math. Volume 03, Number 2 (1980), 191-199<br>
 
**  Takuro SHINTANI. Source: Tokyo J. of Math. Volume 03, Number 2 (1980), 191-199<br>
 
+
* Barnes, E. W. 2013. “The Genesis of the Double Gamma Functions.” Proceedings of the London Mathematical Society S1-31 (1): 358. doi:10.1112/plms/s1-31.1.358.
* http://www.jstor.org/action/doBasicSearch?Query=
 
* http://www.ams.org/mathscinet
 
* http://dx.doi.org/
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
==블로그==
 

2013년 3월 6일 (수) 11:53 판

개요

  • 더블 감마함수의 역수로 정의되는 함수
  • 성질\[G(1)=1\]\[G(s+1) =\Gamma(s)G(s)\]
  • 자연수 n에 대하여 다음이 성립한다\[G(n)=(n-1)!\times (n-2)! \times\cdots 2!\times 1!\]

 

 

점근급수

\[\log G(z+1)=\frac{1}{12}~-~\log A~+~\frac{z}{2}\log 2\pi~+~\left(\frac{z^2}{2} -\frac{1}{12}\right)\log z~-~\frac{3z^2}{4}~+~ \sum_{k=1}^{N}\frac{B_{2k + 2}}{4k\left(k + 1\right)z^{2k}}~+~O\left(\frac{1}{z^{2N + 2}}\right)\]

여기서 A는 Glaisher–Kinkelin 상수 \(A= e^{\frac{1}{12}-\zeta^\prime(-1)}= 1.28242712\dots\)

 

 

special values

  • A는 Glaisher–Kinkelin 상수\[G(\frac{1}{2})=2^{\frac{1}{24}}\cdot \pi^{-\frac{1}{4}}\cdot e^{\frac{1}{8}}\cdot A^{-\frac{3}{2}}\]\[G(\frac{3}{4})=2^{-\frac{1}{8}}\cdot \pi^{-\frac{1}{4}}\cdot e^{\frac{1}{8}}\cdot A^{-\frac{3}{2}}\] 또는 \(G(\frac{3}{4})=2^{-\frac{1}{8}}\cdot \pi^{-\frac{1}{4}}\cdot e^{\frac{3}{32}+\frac{G}{4\pi}}\cdot A^{-\frac{9}{8}}\cdot \Gamma(\frac{1}{4})^{\frac{1}{4}}\)

 

 

로그 삼각함수 적분과의 관계

\[\int_{0}^{t}\pi u \cot \pi u\,du=t\log {2\pi}+\log \frac{G(1-t)}{G(1+t)}\] \[\int_{0}^{t}\log(\sin \pi u)\,du=t\log(\frac{\sin \pi t}{2\pi})+\log \frac{G(1+t)}{G(1-t)}\]

 

   

 

역사

 

메모

 

 

관련된 항목들

 

 

수학용어번역

 

사전 형태의 자료

 

관련논문

  • Multiple Gamma and Related Functions
    • J. Choi, H. M. Srivastava, V.S. Adamchik , Applied Mathematics and Computation, 134 (2003), 515-533
  • A Proof of the Classical Kronecker Limit Formula
    • Takuro SHINTANI. Source: Tokyo J. of Math. Volume 03, Number 2 (1980), 191-199
  • Barnes, E. W. 2013. “The Genesis of the Double Gamma Functions.” Proceedings of the London Mathematical Society S1-31 (1): 358. doi:10.1112/plms/s1-31.1.358.