"헤논-헤일스 방정식(Hénon-Heiles Equation)"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
Pythagoras0 (토론 | 기여) |
Pythagoras0 (토론 | 기여) |
||
84번째 줄: | 84번째 줄: | ||
* Hénon, M. & Heiles, C. 1964. The applicability of the third integral of motion: some numerical experiments, The Astronomical Journal, 69(1): 73–99 | * Hénon, M. & Heiles, C. 1964. The applicability of the third integral of motion: some numerical experiments, The Astronomical Journal, 69(1): 73–99 | ||
[[분류:적분가능모형]] | [[분류:적분가능모형]] | ||
+ | [[분류:수리물리학]] |
2013년 3월 24일 (일) 15:00 판
개요
- 자유도가 2인 해밀토니안 계의 대표적인 모델
- 해밀토니안의 파라메터에 따라서, 적분가능한 경우와 카오스 인 경우가 존재
해밀토니안
\(H(x,y,\dot{x},\dot{y})=\frac{1}{2} \left(\dot{x}^2+\dot{y}^2+A x^2+B y^2\right)+x y^2+\frac{C x^3}{3}\)
- A=B =1 and C= −1 인 경우는 대표적인 카오스의 예
적분가능한 경우
- [Bountis1982] 에서 Painleve analysis에 의해 분석
- 세 가지 적분 가능한 경우
(i) C =1 and A=B (known to be separable in the variables s =x +y, d =x −y).
(ii) C =6 and any A and B.
(iii) C =16 and B =16A.
역사
메모
- 포텐셜 http://www.phy.ilstu.edu/~rfm/380F10/CH3.4Ex9_HenonHeilesV.pdf
- http://www.bookrags.com/tandf/henon-heiles-system-tf/
관련된 항목들
사전 형태의 자료
- http://en.wikipedia.org/wiki/Carl_E._Heiles
- http://en.wikipedia.org/wiki/Michel_H%C3%A9non
- http://ko.wikipedia.org/wiki/
- http://en.wikipedia.org/wiki/
expository
- Ford, Joseph. 1992. The Fermi-Pasta-Ulam problem: Paradox turns discovery. Physics Reports 213, no. 5 (May): 271-310. doi:10.1016/0370-1573(92)90116-H.
관련논문
- Grammaticos, B., B. Dorizzi, and R. Padjen. 1982. Painleve property and integrals of motion for the Henon-Heiles system. Physics Letters A 89, no. 3 (May 3): 111-113. doi:10.1016/0375-9601(82)90868-4.
- [Bountis1982]Bountis, Tassos, Harvey Segur, and Franco Vivaldi. 1982. Integrable Hamiltonian systems and the Painlevé property. Physical Review A 25, no. 3 (March 1): 1257. doi:10.1103/PhysRevA.25.1257.
- Branching of solutions and the nonexistence of first integrals in Hamiltonian mechanics
- Hénon, M. & Heiles, C. 1964. The applicability of the third integral of motion: some numerical experiments, The Astronomical Journal, 69(1): 73–99