"함수 다이로그 항등식(functional dilogarithm identity)"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
잔글 (찾아 바꾸기 – “수학사연표” 문자열을 “수학사 연표” 문자열로)
2번째 줄: 2번째 줄:
  
 
* 로저스 다이로그 함수 (Rogers' dilogarithm)가 만족시키는 두 함수 항등식의 일반화<br>
 
* 로저스 다이로그 함수 (Rogers' dilogarithm)가 만족시키는 두 함수 항등식의 일반화<br>
**  2항 관계식, 반사공식(오일러):<math>0\leq x \leq 1</math> 일 때, :<math>L(x)+L(1-x)=L(1)</math><br>
+
**  2항 관계식, 반사공식(오일러) <math>0\leq x \leq 1</math> 일 때, :<math>L(x)+L(1-x)=L(1)</math>
 
** [[5항 관계식 (5-term relation) |5항 관계식 (5-term relation)]] <math>0\leq x,y\leq 1</math> 일 때, :<math>L(x)+L(1-xy)+L(y)+L(\frac{1-y}{1-xy})+L\left( \frac{1-x}{1-xy} \right)=3L(1)</math>
 
** [[5항 관계식 (5-term relation) |5항 관계식 (5-term relation)]] <math>0\leq x,y\leq 1</math> 일 때, :<math>L(x)+L(1-xy)+L(y)+L(\frac{1-y}{1-xy})+L\left( \frac{1-x}{1-xy} \right)=3L(1)</math>
 
* 클러스터 대수(cluster algebra) 를 이용하여 일반화됨
 
* 클러스터 대수(cluster algebra) 를 이용하여 일반화됨
 
* n 변수로 구성된 <math>(n^2+3n)/2</math> 항 관계식을 찾을 수 있음
 
* n 변수로 구성된 <math>(n^2+3n)/2</math> 항 관계식을 찾을 수 있음
 +
  
 
==2항 관계식==
 
==2항 관계식==
 
+
* <math>S=\left\{x,\frac{1}{x}\right\}</math>라 두면,
<math>S=\left\{x,\frac{1}{x}\right\}</math>
+
:<math>\sum_{a\in S}L(\frac{1}{1+a})=L\left(\frac{1}{\frac{1}{x}+1}\right)+L\left(\frac{1}{x+1}\right)=L(1)</math>
 
 
<math>\sum_{a\in S}L(\frac{1}{1+a})=L\left(\frac{1}{\frac{1}{x}+1}\right)+L\left(\frac{1}{x+1}\right)=L(1)</math>
 
  
 
   
 
   
18번째 줄: 17번째 줄:
  
 
==5항 관계식==
 
==5항 관계식==
 
+
* <math>S=\left\{x,y,\frac{x+1}{y},\frac{y+1}{x},\frac{x+y+1}{x y}\right\}</math> 이면,
<math>S=\left\{x,y,\frac{x+1}{y},\frac{y+1}{x},\frac{x+y+1}{x y}\right\}</math>
+
:<math>\sum_{a\in S}L(\frac{1}{1+a})=L\left(\frac{1}{\frac{x+1}{y}+1}\right)+L\left(\frac{1}{\frac{y+1}{x}+1}\right)+L\left(\frac{1}{\frac{x+y+1}{x y}+1}\right)+L\left(\frac{1}{x+1}\right)+L\left(\frac{1}{y+1}\right)=2L(1)</math>
 
 
<math>\sum_{a\in S}L(\frac{1}{1+a})=L\left(\frac{1}{\frac{x+1}{y}+1}\right)+L\left(\frac{1}{\frac{y+1}{x}+1}\right)+L\left(\frac{1}{\frac{x+y+1}{x y}+1}\right)+L\left(\frac{1}{x+1}\right)+L\left(\frac{1}{y+1}\right)=2L(1)</math>
 
 
 
 
  
 
   
 
   
  
 
==9항 관계식==
 
==9항 관계식==
 
+
* $S$를 다음과 같이 두자
<math>\left\{x,y,z,\frac{x z+x+z+1}{y},\frac{x y+x z+x+y^2+y z+2 y+z+1}{x y z},\frac{x z+x+y+z+1}{x y},\frac{x z+x+y+z+1}{y z},\frac{y+1}{x},\frac{y+1}{z}\right\}</math>
+
:<math>S=\left\{x,y,z,\frac{x z+x+z+1}{y},\frac{x y+x z+x+y^2+y z+2 y+z+1}{x y z},\frac{x z+x+y+z+1}{x y},\frac{x z+x+y+z+1}{y z},\frac{y+1}{x},\frac{y+1}{z}\right\}</math>
 
+
* 다이로그 함수에 대하여 다음이 성립한다
<math>\sum_{a\in S}L(\frac{1}{1+a})=3L(1)</math>
+
:<math>\sum_{a\in S}L(\frac{1}{1+a})=3L(1)</math>
 
 
 
  
 
   
 
   
  
 
==14항 관계식==
 
==14항 관계식==
 +
:<math>\left\{x,z,\frac{(x+1) (z+1)}{y},\frac{z+1}{w},\frac{x z+x+y+z+1}{x y},\frac{(w+z+1) (x z+x+y+z+1)}{w y z},\frac{(y+z+1) (w (x+y+1)+x z+x+y+z+1)}{w x y z}, \frac{w (x+y+1)+x z+x+y+z+1}{y z},\frac{w y+w+y+z+1}{w z},\frac{(x+y+1) (w y+w+y+z+1)}{x y z},\frac{(w+1) (y+1)}{z},\frac{y+1}{x},w,y\right\}</math>
 +
:<math>\sum_{a\in S}L(\frac{1}{1+a})=4L(1)</math>
  
<math>\left\{x,z,\frac{(x+1) (z+1)}{y},\frac{z+1}{w},\frac{x z+x+y+z+1}{x y},\frac{(w+z+1) (x z+x+y+z+1)}{w y z},\frac{(y+z+1) (w (x+y+1)+x z+x+y+z+1)}{w x y z}, \frac{w (x+y+1)+x z+x+y+z+1}{y z},\frac{w y+w+y+z+1}{w z},\frac{(x+y+1) (w y+w+y+z+1)}{x y z},\frac{(w+1) (y+1)}{z},\frac{y+1}{x},w,y\right\}</math>
 
 
<math>\sum_{a\in S}L(\frac{1}{1+a})=4L(1)</math>
 
 
 
 
 
 
 
  
 
==역사==
 
==역사==
58번째 줄: 44번째 줄:
 
   
 
   
  
 
 
==메모==
 
 
 
 
 
 
==관련된 항목들==
 
 
 
 
 
  
 
==매스매티카 파일 및 계산 리소스==
 
==매스매티카 파일 및 계산 리소스==
  
 
* https://docs.google.com/leaf?id=0B8XXo8Tve1cxMzA0M2NkMzMtYTFiNy00N2YwLTlmYzktYWI2YTYwMDMyOTQz&sort=name&layout=list&num=50
 
* https://docs.google.com/leaf?id=0B8XXo8Tve1cxMzA0M2NkMzMtYTFiNy00N2YwLTlmYzktYWI2YTYwMDMyOTQz&sort=name&layout=list&num=50
* http://www.wolframalpha.com/input/?i=
 
* http://functions.wolfram.com/
 
* [http://dlmf.nist.gov/ NIST Digital Library of Mathematical Functions]
 
* [http://www.research.att.com/%7Enjas/sequences/index.html The On-Line Encyclopedia of Integer Sequences]
 
* [http://numbers.computation.free.fr/Constants/constants.html Numbers, constants and computation]
 
  
* [[매스매티카 파일 목록]]
 
 
 
 
 
 
==수학용어번역==
 
 
*  단어사전<br>
 
** http://www.google.com/dictionary?langpair=en|ko&q=
 
** http://ko.wiktionary.org/wiki/
 
* 발음사전 http://www.forvo.com/search/
 
* [http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=&fstr= 대한수학회 수학 학술 용어집]<br>
 
** http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=eng_term&fstr=
 
* [http://www.nktech.net/science/term/term_l.jsp?l_mode=cate&s_code_cd=MA 남·북한수학용어비교]
 
* [http://kms.or.kr/home/kor/board/bulletin_list_subject.asp?bulletinid=%7BD6048897-56F9-43D7-8BB6-50B362D1243A%7D&boardname=%BC%F6%C7%D0%BF%EB%BE%EE%C5%E4%B7%D0%B9%E6&globalmenu=7&localmenu=4 대한수학회 수학용어한글화 게시판]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
==리뷰논문, 에세이, 강의노트==
 
 
 
  
 
   
 
   
121번째 줄: 57번째 줄:
 
* [http://dx.doi.org/10.1023/A:1009709927327 Algebraic Dilogarithm Identities] ,Basil Gordon  and Richard J. Mcintosh, 1997
 
* [http://dx.doi.org/10.1023/A:1009709927327 Algebraic Dilogarithm Identities] ,Basil Gordon  and Richard J. Mcintosh, 1997
 
* L.J. Rogers, On Function Sum Theorems Connected with the Series Formula Proc. London Math. Soc. (1907) s2-4(1): 169-189 doi:[http://dx.doi.org/10.1112/plms/s2-4.1.169%20 10.1112/plms/s2-4.1.169]
 
* L.J. Rogers, On Function Sum Theorems Connected with the Series Formula Proc. London Math. Soc. (1907) s2-4(1): 169-189 doi:[http://dx.doi.org/10.1112/plms/s2-4.1.169%20 10.1112/plms/s2-4.1.169]
* http://www.jstor.org/action/doBasicSearch?Query=
 
* http://www.ams.org/mathscinet
 
* http://dx.doi.org/10.1112/plms/s2-4.1.169
 
 
 
 
 
 
 
 
==링크==
 
  
* [http://www.ams.org/news/math-in-the-media/mathdigest-index Summaries of Media Coverage of Math]
 
 
[[분류:다이로그]]
 
[[분류:다이로그]]

2013년 5월 30일 (목) 03:04 판

개요

  • 로저스 다이로그 함수 (Rogers' dilogarithm)가 만족시키는 두 함수 항등식의 일반화
    • 2항 관계식, 반사공식(오일러) \(0\leq x \leq 1\) 일 때, \[L(x)+L(1-x)=L(1)\]
    • 5항 관계식 (5-term relation) \(0\leq x,y\leq 1\) 일 때, \[L(x)+L(1-xy)+L(y)+L(\frac{1-y}{1-xy})+L\left( \frac{1-x}{1-xy} \right)=3L(1)\]
  • 클러스터 대수(cluster algebra) 를 이용하여 일반화됨
  • n 변수로 구성된 \((n^2+3n)/2\) 항 관계식을 찾을 수 있음


2항 관계식

  • \(S=\left\{x,\frac{1}{x}\right\}\)라 두면,

\[\sum_{a\in S}L(\frac{1}{1+a})=L\left(\frac{1}{\frac{1}{x}+1}\right)+L\left(\frac{1}{x+1}\right)=L(1)\]



5항 관계식

  • \(S=\left\{x,y,\frac{x+1}{y},\frac{y+1}{x},\frac{x+y+1}{x y}\right\}\) 이면,

\[\sum_{a\in S}L(\frac{1}{1+a})=L\left(\frac{1}{\frac{x+1}{y}+1}\right)+L\left(\frac{1}{\frac{y+1}{x}+1}\right)+L\left(\frac{1}{\frac{x+y+1}{x y}+1}\right)+L\left(\frac{1}{x+1}\right)+L\left(\frac{1}{y+1}\right)=2L(1)\]


9항 관계식

  • $S$를 다음과 같이 두자

\[S=\left\{x,y,z,\frac{x z+x+z+1}{y},\frac{x y+x z+x+y^2+y z+2 y+z+1}{x y z},\frac{x z+x+y+z+1}{x y},\frac{x z+x+y+z+1}{y z},\frac{y+1}{x},\frac{y+1}{z}\right\}\]

  • 다이로그 함수에 대하여 다음이 성립한다

\[\sum_{a\in S}L(\frac{1}{1+a})=3L(1)\]


14항 관계식

\[\left\{x,z,\frac{(x+1) (z+1)}{y},\frac{z+1}{w},\frac{x z+x+y+z+1}{x y},\frac{(w+z+1) (x z+x+y+z+1)}{w y z},\frac{(y+z+1) (w (x+y+1)+x z+x+y+z+1)}{w x y z}, \frac{w (x+y+1)+x z+x+y+z+1}{y z},\frac{w y+w+y+z+1}{w z},\frac{(x+y+1) (w y+w+y+z+1)}{x y z},\frac{(w+1) (y+1)}{z},\frac{y+1}{x},w,y\right\}\] \[\sum_{a\in S}L(\frac{1}{1+a})=4L(1)\]


역사



매스매티카 파일 및 계산 리소스



관련논문

  • Nakanishi, Tomoki. 2011. “Dilogarithm Identities for Conformal Field Theories and Cluster Algebras: Simply Laced Case.” Nagoya Mathematical Journal 202 (June): 23–43. doi:10.1215/00277630-1260432.
  • Chapoton, Frédéric. 2005. “Functional Identities for the Rogers Dilogarithm Associated to Cluster Y-Systems.” Bulletin of the London Mathematical Society 37 (5) (October 1): 755 -760. doi:10.1112/S0024609305004510.
  • Algebraic Dilogarithm Identities ,Basil Gordon and Richard J. Mcintosh, 1997
  • L.J. Rogers, On Function Sum Theorems Connected with the Series Formula Proc. London Math. Soc. (1907) s2-4(1): 169-189 doi:10.1112/plms/s2-4.1.169