"여인수(cofactor)와 행렬의 adjugate"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
잔글 (찾아 바꾸기 – “수학사연표” 문자열을 “수학사 연표” 문자열로)
1번째 줄: 1번째 줄:
==이 항목의 수학노트 원문주소==
 
 
* [[여인수(cofactor)와 행렬의 adjugate|cofactor와 행렬의 adjoint]]
 
 
 
 
 
 
 
 
 
==개요==
 
==개요==
  
70번째 줄: 62번째 줄:
  
 
* https://docs.google.com/leaf?id=0B8XXo8Tve1cxOWIzNmQyYzAtZTE5NC00NWJhLTkwMjYtYTVmMTU0N2U0MDI3&sort=name&layout=list&num=50
 
* https://docs.google.com/leaf?id=0B8XXo8Tve1cxOWIzNmQyYzAtZTE5NC00NWJhLTkwMjYtYTVmMTU0N2U0MDI3&sort=name&layout=list&num=50
* http://www.wolframalpha.com/input/?i=
 
* http://functions.wolfram.com/
 
* [http://dlmf.nist.gov/ NIST Digital Library of Mathematical Functions]
 
* [http://people.math.sfu.ca/%7Ecbm/aands/toc.htm Abramowitz and Stegun Handbook of mathematical functions]
 
* [http://www.research.att.com/%7Enjas/sequences/index.html The On-Line Encyclopedia of Integer Sequences]
 
* [http://numbers.computation.free.fr/Constants/constants.html Numbers, constants and computation]
 
* [https://docs.google.com/open?id=0B8XXo8Tve1cxMWI0NzNjYWUtNmIwZi00YzhkLTkzNzQtMDMwYmVmYmIxNmIw 매스매티카 파일 목록]
 
 
 
 
  
 
 
  
 
==수학용어번역==
 
==수학용어번역==
  
* 단어사전<br>
+
* 여인수 {{학술용어집|url=cofactor}}
** http://translate.google.com/#en|ko|
+
* 딸림행렬, 수반행렬,adjoint matrix {{학술용어집|url=adjoint}}
** http://ko.wiktionary.org/wiki/
 
* 발음사전 http://www.forvo.com/search/
 
* [http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=&fstr= 대한수학회 수학 학술 용어집]<br>
 
** http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=eng_term&fstr=cofactor
 
** http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=eng_term&fstr=adjoint
 
** cofactor - 여인수
 
** adjoint matrix - 딸림행렬, 수반행렬
 
* [http://www.kss.or.kr/pds/sec/dic.aspx 한국통계학회 통계학 용어 온라인 대조표]
 
* [http://www.nktech.net/science/term/term_l.jsp?l_mode=cate&s_code_cd=MA 남·북한수학용어비교]
 
* [http://kms.or.kr/home/kor/board/bulletin_list_subject.asp?bulletinid=%7BD6048897-56F9-43D7-8BB6-50B362D1243A%7D&boardname=%BC%F6%C7%D0%BF%EB%BE%EE%C5%E4%B7%D0%B9%E6&globalmenu=7&localmenu=4 대한수학회 수학용어한글화 게시판]
 
  
 
 
 
 
107번째 줄: 79번째 줄:
 
* http://ko.wikipedia.org/wiki/
 
* http://ko.wikipedia.org/wiki/
 
* http://en.wikipedia.org/wiki/Adjugate_matrix
 
* http://en.wikipedia.org/wiki/Adjugate_matrix
* [http://eom.springer.de/default.htm The Online Encyclopaedia of Mathematics]
 
* [http://dlmf.nist.gov/ NIST Digital Library of Mathematical Functions]
 
* [http://eqworld.ipmnet.ru/ The World of Mathematical Equations]
 
  
 
 
  
 
 
 
 
118번째 줄: 86번째 줄:
  
 
 
 
 
 
 
 
 
 
 
 
  
  
 
 
  
 
 
 
 
 
[[분류:선형대수학]]
 
[[분류:선형대수학]]

2013년 6월 15일 (토) 05:55 판

개요

  • 정방행렬 \(A=(a_{ij})\) 에서 i행과 j열을 지워얻어진 정방행렬의 행렬식을 \(b_{ij}\)라 하자. \(c_{ij}=(-1)^{i+j}b_{ij}\) 를 (i,j)-cofactor 라 한다
  • cofactor 들로 주어진 행렬 \((c_{ij})\) 의 transpose 를 행렬 A 의 adjugate (또는 adjoint) 이라 한다

 

 

\(\left( \begin{array}{cc} a & b \\ c & d \end{array} \right)\)

\(\left( \begin{array}{cc} d & -b \\ -c & a \end{array} \right)\)

 

\(\left( \begin{array}{ccc} a_{1,1} & a_{1,2} & a_{1,3} \\ a_{2,1} & a_{2,2} & a_{2,3} \\ a_{3,1} & a_{3,2} & a_{3,3} \end{array} \right)\) 의 adjoint

\(\left( \begin{array}{ccc} -a_{2,3} a_{3,2}+a_{2,2} a_{3,3} & a_{1,3} a_{3,2}-a_{1,2} a_{3,3} & -a_{1,3} a_{2,2}+a_{1,2} a_{2,3} \\ a_{2,3} a_{3,1}-a_{2,1} a_{3,3} & -a_{1,3} a_{3,1}+a_{1,1} a_{3,3} & a_{1,3} a_{2,1}-a_{1,1} a_{2,3} \\ -a_{2,2} a_{3,1}+a_{2,1} a_{3,2} & a_{1,2} a_{3,1}-a_{1,1} a_{3,2} & -a_{1,2} a_{2,1}+a_{1,1} a_{2,2} \end{array} \right)\)

 

 

\(\left( \begin{array}{ccccc} 2 & -1 & 0 & 0 & 0 \\ -1 & 2 & -1 & 0 & 0 \\ 0 & -1 & 2 & -1 & 0 \\ 0 & 0 & -1 & 2 & -1 \\ 0 & 0 & 0 & -1 & 1 \end{array} \right)\) 의  adjugate

\(\left( \begin{array}{ccccc} 1 & 1 & 1 & 1 & 1 \\ 1 & 2 & 2 & 2 & 2 \\ 1 & 2 & 3 & 3 & 3 \\ 1 & 2 & 3 & 4 & 4 \\ 1 & 2 & 3 & 4 & 5 \end{array} \right)\)

 

 

역사

 

 

 

메모

 

 

 

관련된 항목들

 

 

매스매티카 파일 및 계산 리소스


수학용어번역

  • 여인수 cofactor - 대한수학회 수학용어집
  • 딸림행렬, 수반행렬,adjoint matrix adjoint - 대한수학회 수학용어집

 

 

 

사전 형태의 자료


 

리뷰논문, 에세이, 강의노트