"Q-적분 (잭슨 적분, Jackson integral)"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
1번째 줄: 1번째 줄:
 
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">이 항목의 스프링노트 원문주소</h5>
 
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">이 항목의 스프링노트 원문주소</h5>
  
* [[q-적분 (잭슨 적분, Jackson integral)|q-적분]]<br>
+
* [[q-적분 (잭슨 적분, Jackson integral)]]<br>
  
 
 
 
 
73번째 줄: 73번째 줄:
  
 
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">관련된 항목들</h5>
 
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">관련된 항목들</h5>
 +
 +
 
 +
 +
 
 +
 +
<h5>매스매티카 파일 및 계산 리소스</h5>
 +
 +
*  
 +
* http://www.wolframalpha.com/input/?i=
 +
* http://functions.wolfram.com/
 +
* [http://dlmf.nist.gov/ NIST Digital Library of Mathematical Functions]
 +
* [http://www.research.att.com/%7Enjas/sequences/index.html The On-Line Encyclopedia of Integer Sequences]
 +
* [http://numbers.computation.free.fr/Constants/constants.html Numbers, constants and computation]
 +
 +
* [[매스매티카 파일 목록]]
 +
 +
 
  
 
 
 
 

2011년 7월 21일 (목) 09:25 판

이 항목의 스프링노트 원문주소

 

 

개요
  • 적분의 q-analogue
  • 잭슨적분이라 불르기도 한다

 

 

정의
  • \(0<q<1\)에 대하여 다음과 같이 정의
    \(\int_0^a f(x) d_q x = (1-q)\sum_{k=0}^{\infty}f(aq^k)aq^k \)
    \(\int_0^{\infty} f(x) d_q x =(1-q)\sum_{k=-\infty}^{\infty}q^k f(aq^k )\)
  • \(q\to 1\) 이면, \(\int_0^a f(x) d_q x \to \int_0^a f(x) dx \)

 

 

 

페르마의 결과
  • 위의 방법으로 페르마는 다음 적분을 기하급수 문제로 변형하여 해결함
    \(\int_0^a x^n\,dx\)

 

\(\int_0^a x^n d_q x = a(1-q)\sum_{k=0}^{\infty}q^k a^nq^{nk}=a(1-q)\sum_{k=0}^{\infty}q^k a^nq^{nk}=\frac{1-q}{1-q^{n+1}}a^{n+1}\)

\(\lim_{q\to 1}\frac{1-q}{1-q^{n+1}}a^{n+1}=\frac{a^{n+1}}{n+1}\)

 

 

 

재미있는 사실

 

 

 

역사

 

 

 

메모

 

 

관련된 항목들

 

 

매스매티카 파일 및 계산 리소스

 

 

 

수학용어번역

 

 

사전 형태의 자료

 

 

관련논문

 

 

관련도서

 

 

관련기사

 

 

블로그