"폴리로그 함수(polylogarithm)"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
Pythagoras0 (토론 | 기여) |
Pythagoras0 (토론 | 기여) |
||
1번째 줄: | 1번째 줄: | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
==개요== | ==개요== | ||
− | * [[ | + | * [[다이로그 함수(dilogarithm)]] 의 일반화 |
− | |||
− | |||
− | + | ||
− | + | ||
==정의== | ==정의== | ||
+ | :<math>\operatorname{Li}_r(z)= \sum_{n=1}^\infty {z^n \over n^r}=\int_0^z \operatorname{Li}_{r-1}(t) \frac{dt}{t}</math> | ||
+ | :<math>\operatorname{Li}_3(z) =\int_0^z \operatorname{Li}_2(t) \frac{dt}{t}</math> | ||
− | + | ||
− | |||
− | |||
− | |||
− | |||
− | + | ||
==로그함수== | ==로그함수== | ||
− | * [[로그 함수]]:<math>-\log (1-z)=z+\frac{z^2}{2}+\frac{z^3}{3}+\frac{z^4}{4}+\frac{z^5}{5}+\cdots</math | + | * [[로그 함수]] |
+ | :<math>-\log (1-z)=z+\frac{z^2}{2}+\frac{z^3}{3}+\frac{z^4}{4}+\frac{z^5}{5}+\cdots</math> | ||
− | + | ||
− | + | ||
==역사== | ==역사== | ||
− | + | ||
* http://www.google.com/search?hl=en&tbs=tl:1&q= | * http://www.google.com/search?hl=en&tbs=tl:1&q= | ||
* [[수학사 연표]] | * [[수학사 연표]] | ||
− | |||
− | |||
− | + | ||
+ | |||
+ | |||
==메모== | ==메모== | ||
− | * http://mathoverflow.net/questions/25428/what-is-special-about-polylogarithms-that-leads-to-so-many-interesting-identities | + | * http://mathoverflow.net/questions/25428/what-is-special-about-polylogarithms-that-leads-to-so-many-interesting-identities |
* http://books.google.com/books?hl=ko&lr=&id=9G3nlZUDAhkC&oi=fnd&pg=PA391&dq=The+classical+polylogarithms,+algebraic+K-theory&ots=zst2m387di&sig=kNRuqZp_mUdFDXScW41qNbprgps#v=onepage&q=&f=false | * http://books.google.com/books?hl=ko&lr=&id=9G3nlZUDAhkC&oi=fnd&pg=PA391&dq=The+classical+polylogarithms,+algebraic+K-theory&ots=zst2m387di&sig=kNRuqZp_mUdFDXScW41qNbprgps#v=onepage&q=&f=false | ||
− | * [http://www.maths.dur.ac.uk/%7Edma0hg/kyoto.pdf Functional equations of polylogarithms] Herbert Gangl | + | * [http://www.maths.dur.ac.uk/%7Edma0hg/kyoto.pdf Functional equations of polylogarithms] Herbert Gangl |
* [http://www.maths.dur.ac.uk/%7Edma0hg/kyoto.pdf http://www.maths.dur.ac.uk/~dma0hg/kyoto.pdf] | * [http://www.maths.dur.ac.uk/%7Edma0hg/kyoto.pdf http://www.maths.dur.ac.uk/~dma0hg/kyoto.pdf] | ||
* [http://www.maths.dur.ac.uk/%7Ed40ppt/pdf/John_Rhodes.pdf http://www.maths.dur.ac.uk/~d40ppt/pdf/John_Rhodes.pdf] | * [http://www.maths.dur.ac.uk/%7Ed40ppt/pdf/John_Rhodes.pdf http://www.maths.dur.ac.uk/~d40ppt/pdf/John_Rhodes.pdf] | ||
− | |||
− | |||
− | + | ||
− | |||
− | |||
==관련된 항목들== | ==관련된 항목들== | ||
− | * [[L-함수의 값 구하기 입문]] | + | * [[L-함수의 값 구하기 입문]] |
− | * [[원주율의 BBP 공식|파이에 대한 BBP 공식]] | + | * [[원주율의 BBP 공식|파이에 대한 BBP 공식]] |
− | * [[로그 사인 적분 (log sine integrals)]] | + | * [[로그 사인 적분 (log sine integrals)]] |
− | |||
− | |||
− | + | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
+ | ==사전 형태의 자료== | ||
* http://ko.wikipedia.org/wiki/ | * http://ko.wikipedia.org/wiki/ | ||
* http://en.wikipedia.org/wiki/Polylogarithm | * http://en.wikipedia.org/wiki/Polylogarithm | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | + | ||
− | |||
− | |||
==리뷰논문, 에세이, 강의노트== | ==리뷰논문, 에세이, 강의노트== | ||
104번째 줄: | 68번째 줄: | ||
* John R. Rhodes [http://www.mathematik.hu-berlin.de/%7Ekreimer/Polylogarithms.pdf Polylogarithms] ,2008 | * John R. Rhodes [http://www.mathematik.hu-berlin.de/%7Ekreimer/Polylogarithms.pdf Polylogarithms] ,2008 | ||
* Richard Hain, [http://arxiv.org/abs/alg-geom/9202022 Classical Polylogarithms] , 1992 | * Richard Hain, [http://arxiv.org/abs/alg-geom/9202022 Classical Polylogarithms] , 1992 | ||
+ | * Some wonderful formulas ... an introduction to polylogarithms A.J. Van der Poorten, Queen's papers in Pure and Applied Mathematics, 54 (1979), 269-286 (http://www.ega-math.narod.ru/Apery2.htm ) | ||
+ | * Askey, Richard. 1982. “Book Review: Polylogarithms and Associated Functions.” American Mathematical Society. Bulletin. New Series 6 (2): 248–251. doi:10.1090/S0273-0979-1982-14998-9. | ||
− | + | ||
− | |||
− | |||
− | |||
− | |||
==관련논문== | ==관련논문== | ||
+ | * [http://arxiv.org/abs/math/0310062 Multiple Polylogarithms: A Brief Survey] Douglas Bowman, David M. Bradley, 5 Oct 2003 | ||
+ | * [http://arxiv.org/abs/math.CA/9803067 Polylogarithmic ladders, hypergeometric series and the ten millionth digits of $\zeta(3)$ and $\zeta(5)$] D. J. Broadhurst, 1998 | ||
+ | * [http://dx.doi.org/http://dx.doi.org/10.1090%2FS0025-5718-97-00856-9 On the rapid computation of various polylogarithmic constants] David Bailey; Peter Borwein; Simon Plouffe.Journal: Math. Comp. 66 (1997), 903-913. | ||
+ | * Ramakrishnan, Analogs of the Bloch-Wigner function for higher polylogarithms, 1986 | ||
+ | * The classical polylogarithms, algebraic K-theory and $\zeta_F(n)$, Goncharov, A. Proc. of the Gelfand Seminar, Birkhauser, 113-135 | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
[[분류:다이로그]] | [[분류:다이로그]] |
2013년 11월 2일 (토) 07:45 판
개요
- 다이로그 함수(dilogarithm) 의 일반화
정의
\[\operatorname{Li}_r(z)= \sum_{n=1}^\infty {z^n \over n^r}=\int_0^z \operatorname{Li}_{r-1}(t) \frac{dt}{t}\] \[\operatorname{Li}_3(z) =\int_0^z \operatorname{Li}_2(t) \frac{dt}{t}\]
로그함수
\[-\log (1-z)=z+\frac{z^2}{2}+\frac{z^3}{3}+\frac{z^4}{4}+\frac{z^5}{5}+\cdots\]
역사
메모
- http://books.google.com/books?hl=ko&lr=&id=9G3nlZUDAhkC&oi=fnd&pg=PA391&dq=The+classical+polylogarithms,+algebraic+K-theory&ots=zst2m387di&sig=kNRuqZp_mUdFDXScW41qNbprgps#v=onepage&q=&f=false
- Functional equations of polylogarithms Herbert Gangl
- http://www.maths.dur.ac.uk/~dma0hg/kyoto.pdf
- http://www.maths.dur.ac.uk/~d40ppt/pdf/John_Rhodes.pdf
관련된 항목들
사전 형태의 자료
리뷰논문, 에세이, 강의노트
- John R. Rhodes Polylogarithms ,2008
- Richard Hain, Classical Polylogarithms , 1992
- Some wonderful formulas ... an introduction to polylogarithms A.J. Van der Poorten, Queen's papers in Pure and Applied Mathematics, 54 (1979), 269-286 (http://www.ega-math.narod.ru/Apery2.htm )
- Askey, Richard. 1982. “Book Review: Polylogarithms and Associated Functions.” American Mathematical Society. Bulletin. New Series 6 (2): 248–251. doi:10.1090/S0273-0979-1982-14998-9.
관련논문
- Multiple Polylogarithms: A Brief Survey Douglas Bowman, David M. Bradley, 5 Oct 2003
- Polylogarithmic ladders, hypergeometric series and the ten millionth digits of $\zeta(3)$ and $\zeta(5)$ D. J. Broadhurst, 1998
- On the rapid computation of various polylogarithmic constants David Bailey; Peter Borwein; Simon Plouffe.Journal: Math. Comp. 66 (1997), 903-913.
- Ramakrishnan, Analogs of the Bloch-Wigner function for higher polylogarithms, 1986
- The classical polylogarithms, algebraic K-theory and $\zeta_F(n)$, Goncharov, A. Proc. of the Gelfand Seminar, Birkhauser, 113-135