"경로 적분 (contour integral)"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
1번째 줄: 1번째 줄:
==이 항목의 수학노트 원문주소==
 
 
 
 
 
 
 
==개요==
 
==개요==
  
 
* 경로 (1차원 곡선) 을 따라 복소함수를 적분할 수 있다
 
* 경로 (1차원 곡선) 을 따라 복소함수를 적분할 수 있다
 
* 실변수함수의 [[선적분]] 개념을 이용하여 정의된다
 
* 실변수함수의 [[선적분]] 개념을 이용하여 정의된다
*  C1 곡선인 <math>\gamma</math> 가 복소평면 상에서  <math>r(t)=x(t)+ i y(t)</math> , <math>a\leq t \leq b</math> 로 매개화되는 경우, <math>\oint _{\gamma }f dz</math> 는 다음과 같이 정의된다:<math>\oint _{\gamma }f dz = \int_a^b f (x(t)+i y(t)) \left(x'(t)+i y'(t)\right) \, dt</math><br>
+
*  C1 곡선인 <math>\gamma</math> 가 복소평면 상에서  <math>r(t)=x(t)+ i y(t)</math> , <math>a\leq t \leq b</math> 로 매개화되는 경우, <math>\oint _{\gamma }f dz</math> 는 다음과 같이 정의된다
 
+
:<math>\oint _{\gamma }f dz = \int_a^b f (x(t)+i y(t)) \left(x'(t)+i y'(t)\right) \, dt</math>
 
 
 
 
 
 
==역사==
 
 
 
 
 
 
* http://www.google.com/search?hl=en&tbs=tl:1&q=
 
* [[수학사 연표]]
 
 
 
 
 
 
 
 
 
==메모==
 
  
 
   
 
   
  
* Math Overflow http://mathoverflow.net/search?q=
 
  
 
  
 
   
 
   
38번째 줄: 14번째 줄:
 
==관련된 항목들==
 
==관련된 항목들==
  
*   
+
[[유수 정리 (residue theorem)]]
  
 
  
 
   
 
   
  
 
==매스매티카 파일 및 계산 리소스==
 
==매스매티카 파일 및 계산 리소스==
 
 
* https://docs.google.com/leaf?id=0B8XXo8Tve1cxZjY5NjU1N2EtM2I5OC00N2QzLTlmOWItMDA2NWQ0MmYzZmEz&sort=name&layout=list&num=50
 
* https://docs.google.com/leaf?id=0B8XXo8Tve1cxZjY5NjU1N2EtM2I5OC00N2QzLTlmOWItMDA2NWQ0MmYzZmEz&sort=name&layout=list&num=50
* http://www.wolframalpha.com/input/?i=
+
* http://mathematica.stackexchange.com/questions/34073/how-to-calculate-contour-integrals-with-mathematica/34090#34090
* http://functions.wolfram.com/
 
* [http://dlmf.nist.gov/ NIST Digital Library of Mathematical Functions]
 
* [http://people.math.sfu.ca/%7Ecbm/aands/toc.htm Abramowitz and Stegun Handbook of mathematical functions]
 
* [http://www.research.att.com/%7Enjas/sequences/index.html The On-Line Encyclopedia of Integer Sequences]
 
* [http://numbers.computation.free.fr/Constants/constants.html Numbers, constants and computation]
 
* [https://docs.google.com/open?id=0B8XXo8Tve1cxMWI0NzNjYWUtNmIwZi00YzhkLTkzNzQtMDMwYmVmYmIxNmIw 매스매티카 파일 목록]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
==리뷰논문, 에세이, 강의노트==
 
 
[[분류:복소함수론]]
 
[[분류:복소함수론]]

2014년 4월 13일 (일) 00:22 판

개요

  • 경로 (1차원 곡선) 을 따라 복소함수를 적분할 수 있다
  • 실변수함수의 선적분 개념을 이용하여 정의된다
  • C1 곡선인 \(\gamma\) 가 복소평면 상에서 \(r(t)=x(t)+ i y(t)\) , \(a\leq t \leq b\) 로 매개화되는 경우, \(\oint _{\gamma }f dz\) 는 다음과 같이 정의된다

\[\oint _{\gamma }f dz = \int_a^b f (x(t)+i y(t)) \left(x'(t)+i y'(t)\right) \, dt\]




관련된 항목들



매스매티카 파일 및 계산 리소스