"스미스-민코프스키-지겔 질량 공식"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
29번째 줄: 29번째 줄:
 
==메모==
 
==메모==
 
* [http://www.math.umn.edu/~garrett/m/v/easy_siegel_weil.pdf Proof of a simple case of the Siegel-Weil formula]
 
* [http://www.math.umn.edu/~garrett/m/v/easy_siegel_weil.pdf Proof of a simple case of the Siegel-Weil formula]
 +
* [http://www.math.umn.edu/~garrett/m/v/siegel_integral.pdf Siegel's integral]
 
* [http://www.math.ucla.edu/~hida/RT01F.pdf Siegel-Weil Formulas]  
 
* [http://www.math.ucla.edu/~hida/RT01F.pdf Siegel-Weil Formulas]  
 
* http://math.berkeley.edu/~reb/papers/siegel/
 
* http://math.berkeley.edu/~reb/papers/siegel/

2014년 4월 22일 (화) 08:40 판

개요

  • $n\geq 2$ 자연수
  • $L$ : 양의 정부호인 $n$ 차원 정수계수 이차형식
  • ${\rm gen}(L)$ : $L$과 같은 genus에 속하는 이차형식의 동치류
  • $f$의 질량 $m(f)$를 다음과 같이 정의

$$ m(f):=\sum_{M\in {\rm gen}(L)}\frac{1}{|{\rm Aut}(M)|} $$

정리 (스미스-민코프스키-지겔)

다음이 성립한다 \[m(f) = 2\pi^{-n(n+1)/4}\prod_{j=1}^n\Gamma(j/2)\prod_{p\text{ prime}}2m_p(f)\] 여기서 \[m_p(f) = {p^{(rn(n-1)+s(n+1))/2}\over N(p^r)}\]

  • n차원 even unimodular 격자의 경우의 질량 공식은 다음과 같이 표현된다

\[\sum_{\Lambda}{1\over|\operatorname{Aut}(\Lambda)|} = {|B_{n/2}|\over n}\prod_{1\le j< n/2}{|B_{2j}|\over 4j}\]

여기서 $B_k$는 베르누이 수

  • 8차원 even unimodular 격자는 E8격자 뿐이이며 질량 공식의 우변은 다음과 같다

$$ \frac{1}{696729600} $$

  • 696729600은 E8격자의 자기동형군의 크기이며, 바일군 $W(E_8)$의 크기이기도 하다


메모


사전 형태의 자료