"베일리 쌍(Bailey pair)과 베일리 보조정리"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
1번째 줄: 1번째 줄:
 
==개요==
 
==개요==
  
*  q-series 항등식을 증명하는 중요한 테크닉
+
* q-series 항등식을 증명하는 중요한 테크닉
  
 
+
  
 
+
  
 
==베일리 쌍(Bailey pair)==
 
==베일리 쌍(Bailey pair)==
  
*  다음을 만족시키는 두 수열<math>\{\alpha_r\}, \{\beta_r\}</math>을 <em>a</em>에 대한 베일리 쌍이라 부른다:<math>\beta_L=\sum_{r=0}^{L}\frac{\alpha_r}{(q)_{L-r}(aq)_{L+r}}</math><br>
+
*  다음을 만족시키는 두 수열<math>\{\alpha_r\}, \{\beta_r\}</math>을 <em>a</em>에 대한 베일리 쌍이라 부른다:<math>\beta_L=\sum_{r=0}^{L}\frac{\alpha_r}{(q)_{L-r}(aq)_{L+r}}</math>
*  켤레 베일리 쌍  <math>\{\delta_r\}, \{\gamma_r\}</math>:<math>\gamma_L=\sum_{r=L}^{\infty}\frac{\delta_r}{(q)_{r-L}(aq)_{r+L}}=\sum_{r=0}^{\infty}\frac{\delta_{r+L}}{(q)_{r}(aq)_{r+2L}}</math><br>
+
*  켤레 베일리 쌍  <math>\{\delta_r\}, \{\gamma_r\}</math>:<math>\gamma_L=\sum_{r=L}^{\infty}\frac{\delta_r}{(q)_{r-L}(aq)_{r+L}}=\sum_{r=0}^{\infty}\frac{\delta_{r+L}}{(q)_{r}(aq)_{r+2L}}</math>
*  베일리 쌍을 얻기 위해 [[합공식의 q-analogue]] 들의 특별한 경우들을 많이 이용함<br>
+
*  베일리 쌍을 얻기 위해 [[합공식의 q-analogue]] 들의 특별한 경우들을 많이 이용함
  
 
+
  
 
+
  
 
+
  
 
==왜 베일리 쌍을 공부하나?==
 
==왜 베일리 쌍을 공부하나?==
  
*  베일리 쌍을 이용하여 [[로저스-라마누잔 항등식]] 과 같은 q-series 항등식을 증명할 수 있음<br>
+
*  베일리 쌍을 이용하여 [[로저스-라마누잔 항등식]] 과 같은 q-series 항등식을 증명할 수 있음
**  베일리 보조정리를 이용하는 경우<br>
+
**  베일리 보조정리를 이용하는 경우
**  베일리 쌍의 정의로부터:<math>\beta_L=\sum_{r=0}^{L}\frac{\alpha_r}{(q)_{L-r}(aq)_{L+r}}</math><br>
+
**  베일리 쌍의 정의로부터:<math>\beta_L=\sum_{r=0}^{L}\frac{\alpha_r}{(q)_{L-r}(aq)_{L+r}}</math>
  
 
+
  
 
+
  
 
==베일리 쌍과 켤레 베일리 쌍의 예==
 
==베일리 쌍과 켤레 베일리 쌍의 예==
  
*  베일리 쌍과 켤레 베일리 쌍 (relative to 1):<math>\alpha_{n}=(-1)^{n}q^{\frac{3}{2}n^2}(q^{\frac{1}{2}n}+q^{-\frac{1}{2}n})</math>:<math>\beta_n=\frac{1}{(q)_{n}}</math>:<math>\delta_n=q^{n^2}</math>:<math>\gamma_n=\frac{q^{n^2}}{(q)_{\infty}}</math><br>
+
*  베일리 쌍과 켤레 베일리 쌍 (relative to 1):<math>\alpha_{n}=(-1)^{n}q^{\frac{3}{2}n^2}(q^{\frac{1}{2}n}+q^{-\frac{1}{2}n})</math>:<math>\beta_n=\frac{1}{(q)_{n}}</math>:<math>\delta_n=q^{n^2}</math>:<math>\gamma_n=\frac{q^{n^2}}{(q)_{\infty}}</math>
*  아래의 베일리 보조 정리를 이용하여, [[로저스-라마누잔 항등식]] 을 증명할 수 있다:<math>\sum_{n=0}^{\infty}\frac{q^{n^2}}{ (q)_{n}}=\frac{(q^{3};q^{5})_{\infty}(q^{2};q^{5})_{\infty}(q^{5};q^{5})_{\infty}}{(q)_{\infty}}=\frac{1}{(q^{1};q^{5})_{\infty}(q^{4};q^{5})_{\infty}}</math><br>
+
*  아래의 베일리 보조 정리를 이용하여, [[로저스-라마누잔 항등식]] 을 증명할 수 있다:<math>\sum_{n=0}^{\infty}\frac{q^{n^2}}{ (q)_{n}}=\frac{(q^{3};q^{5})_{\infty}(q^{2};q^{5})_{\infty}(q^{5};q^{5})_{\infty}}{(q)_{\infty}}=\frac{1}{(q^{1};q^{5})_{\infty}(q^{4};q^{5})_{\infty}}</math>
  
 
+
  
 
+
  
 
==베일리 보조 정리==
 
==베일리 보조 정리==
  
*  베일릴 보조 정리는 베일리 쌍과 켤레 베일리 쌍에 대한 항등식이다<br>
+
*  베일릴 보조 정리는 베일리 쌍과 켤레 베일리 쌍에 대한 항등식이다
*  네 수열<math>\{\alpha_r\}, \{\beta_r\}</math>, <math>\{\delta_r\}, \{\gamma_r\}</math> :<math>\beta_L=\sum_{r=0}^{L}{\alpha_r}{u_{L-r}v_{L+r}}, \gamma_L=\sum_{r=L}^{\infty}{\delta_r}{u_{r-L}v_{r+L}}</math><br> 이 조건을 만족시키면 다음이 성립한다
+
*  네 수열<math>\{\alpha_r\}, \{\beta_r\}</math>, <math>\{\delta_r\}, \{\gamma_r\}</math> 다음 조건을 만족시킨다고 하자
 +
:<math>\beta_L=\sum_{r=0}^{L}{\alpha_r}{u_{L-r}v_{L+r}}, \gamma_L=\sum_{r=L}^{\infty}{\delta_r}{u_{r-L}v_{r+L}}</math>  
 +
* 다음이 성립한다
 
:<math>\sum_{n=0}^{\infty}\alpha_n\gamma_{n}=\sum_{n=0}^{\infty}\beta_n\delta_{n}</math><br>
 
:<math>\sum_{n=0}^{\infty}\alpha_n\gamma_{n}=\sum_{n=0}^{\infty}\beta_n\delta_{n}</math><br>
* 다음과 같이 u,v 를 선택한다:<math>u_{n}=\frac{1}{(q)_n}, v_{n}=\frac{1}{(x)_n}</math>, 여기서 <math>x=aq</math><br>
+
* 다음과 같이 u,v 를 선택한다:<math>u_{n}=\frac{1}{(q)_n}, v_{n}=\frac{1}{(x)_n}</math>, 여기서 <math>x=aq</math><br>
  
 
+
  
 
+
 
 
==역사==
 
 
 
 
 
 
 
* http://www.google.com/search?hl=en&tbs=tl:1&q=
 
* [[수학사 연표]]
 
 
 
 
 
 
 
 
 
 
 
==메모==
 
 
 
 
 
 
 
* Math Overflow http://mathoverflow.net/search?q=
 
 
 
 
 
 
 
 
 
  
 
==관련된 항목들==
 
==관련된 항목들==
 
* [[multisum]]
 
* [[multisum]]
 
+
 
+
  
==사전 형태의 자료==
+
==사전 형태의 자료==
  
 
* http://ko.wikipedia.org/wiki/
 
* http://ko.wikipedia.org/wiki/
 
* http://en.wikipedia.org/wiki/Bailey_pair
 
* http://en.wikipedia.org/wiki/Bailey_pair
 
* http://en.wikipedia.org/wiki/Wilfrid_Norman_Bailey
 
* http://en.wikipedia.org/wiki/Wilfrid_Norman_Bailey
* [http://dlmf.nist.gov/ NIST Digital Library of Mathematical Functions]<br>
+
* [http://dlmf.nist.gov/ NIST Digital Library of Mathematical Functions]
 
** [http://dlmf.nist.gov/17.12 §17.12 Bailey Pairs]
 
** [http://dlmf.nist.gov/17.12 §17.12 Bailey Pairs]
  
 
+
 
 
 
 
 
 
==리뷰논문, 에세이, 강의노트==
 
 
 
* [http://arxiv.org/abs/0910.2062v2 50 Years of Bailey's lemma] S. Ole Warnaar, 2009
 
 
 
 
 
 
 
 
 
  
 +
  
 +
==리뷰, 에세이, 강의노트==
 +
* Warnaar, S. Ole. ‘50 Years of Bailey’s Lemma’. arXiv:0910.2062 [math], 11 October 2009. http://arxiv.org/abs/0910.2062.
  
 
+
 +
==관련논문==
 +
* Garvan, Frank, and Chris Jennings-Shaffer. ‘Exotic Bailey-Slater SPT-Functions II: Hecke-Rogers-Type Double Sums and Bailey Pairs From Groups A, C, E’. arXiv:1501.06843 [math], 27 January 2015. http://arxiv.org/abs/1501.06843.
  
 
+
 
[[분류:q-급수]]
 
[[분류:q-급수]]

2015년 1월 28일 (수) 23:56 판

개요

  • q-series 항등식을 증명하는 중요한 테크닉



베일리 쌍(Bailey pair)

  • 다음을 만족시키는 두 수열\(\{\alpha_r\}, \{\beta_r\}\)을 a에 대한 베일리 쌍이라 부른다\[\beta_L=\sum_{r=0}^{L}\frac{\alpha_r}{(q)_{L-r}(aq)_{L+r}}\]
  • 켤레 베일리 쌍 \(\{\delta_r\}, \{\gamma_r\}\)\[\gamma_L=\sum_{r=L}^{\infty}\frac{\delta_r}{(q)_{r-L}(aq)_{r+L}}=\sum_{r=0}^{\infty}\frac{\delta_{r+L}}{(q)_{r}(aq)_{r+2L}}\]
  • 베일리 쌍을 얻기 위해 합공식의 q-analogue 들의 특별한 경우들을 많이 이용함




왜 베일리 쌍을 공부하나?

  • 베일리 쌍을 이용하여 로저스-라마누잔 항등식 과 같은 q-series 항등식을 증명할 수 있음
    • 베일리 보조정리를 이용하는 경우
    • 베일리 쌍의 정의로부터\[\beta_L=\sum_{r=0}^{L}\frac{\alpha_r}{(q)_{L-r}(aq)_{L+r}}\]



베일리 쌍과 켤레 베일리 쌍의 예

  • 베일리 쌍과 켤레 베일리 쌍 (relative to 1)\[\alpha_{n}=(-1)^{n}q^{\frac{3}{2}n^2}(q^{\frac{1}{2}n}+q^{-\frac{1}{2}n})\]\[\beta_n=\frac{1}{(q)_{n}}\]\[\delta_n=q^{n^2}\]\[\gamma_n=\frac{q^{n^2}}{(q)_{\infty}}\]
  • 아래의 베일리 보조 정리를 이용하여, 로저스-라마누잔 항등식 을 증명할 수 있다\[\sum_{n=0}^{\infty}\frac{q^{n^2}}{ (q)_{n}}=\frac{(q^{3};q^{5})_{\infty}(q^{2};q^{5})_{\infty}(q^{5};q^{5})_{\infty}}{(q)_{\infty}}=\frac{1}{(q^{1};q^{5})_{\infty}(q^{4};q^{5})_{\infty}}\]



베일리 보조 정리

  • 베일릴 보조 정리는 베일리 쌍과 켤레 베일리 쌍에 대한 항등식이다
  • 네 수열\(\{\alpha_r\}, \{\beta_r\}\), \(\{\delta_r\}, \{\gamma_r\}\) 다음 조건을 만족시킨다고 하자

\[\beta_L=\sum_{r=0}^{L}{\alpha_r}{u_{L-r}v_{L+r}}, \gamma_L=\sum_{r=L}^{\infty}{\delta_r}{u_{r-L}v_{r+L}}\]

  • 다음이 성립한다

\[\sum_{n=0}^{\infty}\alpha_n\gamma_{n}=\sum_{n=0}^{\infty}\beta_n\delta_{n}\]

  • 다음과 같이 u,v 를 선택한다\[u_{n}=\frac{1}{(q)_n}, v_{n}=\frac{1}{(x)_n}\], 여기서 \(x=aq\)



관련된 항목들


사전 형태의 자료



리뷰, 에세이, 강의노트


관련논문

  • Garvan, Frank, and Chris Jennings-Shaffer. ‘Exotic Bailey-Slater SPT-Functions II: Hecke-Rogers-Type Double Sums and Bailey Pairs From Groups A, C, E’. arXiv:1501.06843 [math], 27 January 2015. http://arxiv.org/abs/1501.06843.