"에어리 (Airy) 함수와 미분방정식"의 두 판 사이의 차이
		
		
		
		
		
		둘러보기로 가기
		검색하러 가기
		
				
		
		
	
Pythagoras0 (토론 | 기여)  | 
				Pythagoras0 (토론 | 기여)   | 
				||
| 9번째 줄: | 9번째 줄: | ||
http://www.wolframalpha.com/input/?i=Ai%28x%29  | http://www.wolframalpha.com/input/?i=Ai%28x%29  | ||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
==근사공식==  | ==근사공식==  | ||
| 44번째 줄: | 37번째 줄: | ||
* Math Overflow http://mathoverflow.net/search?q=  | * Math Overflow http://mathoverflow.net/search?q=  | ||
| − | |||
| − | |||
| 54번째 줄: | 45번째 줄: | ||
==수학용어번역==  | ==수학용어번역==  | ||
| − | |||
| − | |||
** http://ko.wiktionary.org/wiki/  | ** http://ko.wiktionary.org/wiki/  | ||
*  발음사전<br>  | *  발음사전<br>  | ||
** http://www.forvo.com/word/airy/#en  | ** http://www.forvo.com/word/airy/#en  | ||
** 아이어리?  | ** 아이어리?  | ||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| 72번째 줄: | 55번째 줄: | ||
* https://docs.google.com/file/d/0B8XXo8Tve1cxbl96STk2T3dpajg/edit  | * https://docs.google.com/file/d/0B8XXo8Tve1cxbl96STk2T3dpajg/edit  | ||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| 98번째 줄: | 72번째 줄: | ||
==리뷰논문, 에세이, 강의노트==  | ==리뷰논문, 에세이, 강의노트==  | ||
| + | * Duistermaat, J. J. “The Light in the Neighborhood of a Caustic.” In Séminaire Bourbaki Vol. 1976/77 Exposés 489–506, 19–29. Lecture Notes in Mathematics 677. Springer Berlin Heidelberg, 1978. http://link.springer.com/chapter/10.1007/BFb0070750.  | ||
| + | |||
| + | |||
| + | ==관련논문==  | ||
| + | * Duistermaat, J. J. “Oscillatory Integrals, Lagrange Immersions and Unfolding of Singularities.” Communications on Pure and Applied Mathematics 27 (1974): 207–81.  | ||
| + | * On the Intensity of Light in the Neighborhood of a Caustic, 1838. http://archive.org/details/cbarchive_36815_ontheintensityoflightintheneig1838.  | ||
| + | |||
| + | |||
| + | |||
| + | |||
[[분류:미분방정식]]  | [[분류:미분방정식]]  | ||
2015년 8월 18일 (화) 23:34 판
개요
- \(y'' - xy = 0\)
 
\(\mathrm{Ai}(x) = \frac{1}{\pi} \int_0^\infty \cos\left(\tfrac13t^3 + xt\right)\, dt,\)
\(\mathrm{Bi}(x) = \frac{1}{\pi} \int_0^\infty \left[\exp\left(-\tfrac13t^3 + xt\right) + \sin\left(\tfrac13t^3 + xt\right)\,\right]dt.,\)
http://www.wolframalpha.com/input/?i=Ai%28x%29
근사공식
- 안장점 근사\[x>>0\] 일 때,\[\mathrm{Ai}(x) \sim \frac{e^{-\frac{2 x^{3/2}}{3}}}{2 \sqrt{\pi } \sqrt[4]{x}}\]\[x<<0\] 일 때,\[\mathrm{Ai}(x) \sim  \frac{\sin \left(\frac{2 |x|^{3/2}}{3}+\frac{\pi }{4}\right)}{\sqrt{\pi } \sqrt[4]{|x|}}\]
 - Asymptotics of the Airy Function
 
 
 
 
역사
 
 
메모
- Math Overflow http://mathoverflow.net/search?q=
 
 
관련된 항목들
- 점근 급수(asymptotic series)
 
수학용어번역
 
매스매티카 파일 및 계산 리소스
 
사전 형태의 자료
- http://ko.wikipedia.org/wiki/
 - http://en.wikipedia.org/wiki/Airy_equation
 - http://en.wikipedia.org/wiki/WKB_approximation
 - The Online Encyclopaedia of Mathematics
 - NIST Digital Library of Mathematical Functions
 - The World of Mathematical Equations
 
 
 
리뷰논문, 에세이, 강의노트
- Duistermaat, J. J. “The Light in the Neighborhood of a Caustic.” In Séminaire Bourbaki Vol. 1976/77 Exposés 489–506, 19–29. Lecture Notes in Mathematics 677. Springer Berlin Heidelberg, 1978. http://link.springer.com/chapter/10.1007/BFb0070750.
 
관련논문
- Duistermaat, J. J. “Oscillatory Integrals, Lagrange Immersions and Unfolding of Singularities.” Communications on Pure and Applied Mathematics 27 (1974): 207–81.
 - On the Intensity of Light in the Neighborhood of a Caustic, 1838. http://archive.org/details/cbarchive_36815_ontheintensityoflightintheneig1838.