"Root systems and Dynkin diagrams(mathematica)"의 두 판 사이의 차이
7번째 줄: | 7번째 줄: | ||
− | <h5>root systems</h5> | + | <h5>A_n root systems</h5> |
− | r := | + | (* A_n type Cartan matrix *)<br> r := 2<br> rt[i_] := UnitVector[r + 1, i] - UnitVector[r + 1, i + 1]<br> a[i_, j_] := (2 Dot[rt[i], rt[j]])/Dot[rt[j], rt[j]]<br> A := Table[a[i, j], {i, 1, r}, {j, 1, r}]<br> A // MatrixForm |
+ | |||
+ | |||
+ | |||
+ | <h5>B_n root systems</h5> | ||
+ | |||
+ | (*B_r type Cartan matrix*)<br> r := 2<br> rt[i_] := UnitVector[r, i] - UnitVector[r, i + 1]<br> rt[r] := UnitVector[r, r]<br> a[i_, j_] := (2 Dot[rt[i], rt[j]])/Dot[rt[j], rt[j]]<br> A := Table[a[i, j], {i, 1, r}, {j, 1, r}]<br> A // MatrixForm | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | <h5>C_n root systems</h5> | ||
+ | |||
+ | (* A_n type Cartan matrix *)<br> r := 2<br> rt[i_] := UnitVector[r + 1, i] - UnitVector[r + 1, i + 1]<br> a[i_, j_] := (2 Dot[rt[i], rt[j]])/Dot[rt[j], rt[j]]<br> A := Table[a[i, j], {i, 1, r}, {j, 1, r}]<br> A // MatrixForm | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | <h5>D_n root systems</h5> | ||
+ | |||
+ | (* A_n type Cartan matrix *)<br> r := 2<br> rt[i_] := UnitVector[r + 1, i] - UnitVector[r + 1, i + 1]<br> a[i_, j_] := (2 Dot[rt[i], rt[j]])/Dot[rt[j], rt[j]]<br> A := Table[a[i, j], {i, 1, r}, {j, 1, r}]<br> A // MatrixForm | ||
2010년 3월 14일 (일) 11:15 판
- Root Systems and Dynkin diagrams
- http://en.wikipedia.org/wiki/root_systems
- [1][2][3][4]http://en.wikipedia.org/wiki/Dynkin_diagram
A_n root systems
(* A_n type Cartan matrix *)
r := 2
rt[i_] := UnitVector[r + 1, i] - UnitVector[r + 1, i + 1]
a[i_, j_] := (2 Dot[rt[i], rt[j]])/Dot[rt[j], rt[j]]
A := Table[a[i, j], {i, 1, r}, {j, 1, r}]
A // MatrixForm
B_n root systems
(*B_r type Cartan matrix*)
r := 2
rt[i_] := UnitVector[r, i] - UnitVector[r, i + 1]
rt[r] := UnitVector[r, r]
a[i_, j_] := (2 Dot[rt[i], rt[j]])/Dot[rt[j], rt[j]]
A := Table[a[i, j], {i, 1, r}, {j, 1, r}]
A // MatrixForm
C_n root systems
(* A_n type Cartan matrix *)
r := 2
rt[i_] := UnitVector[r + 1, i] - UnitVector[r + 1, i + 1]
a[i_, j_] := (2 Dot[rt[i], rt[j]])/Dot[rt[j], rt[j]]
A := Table[a[i, j], {i, 1, r}, {j, 1, r}]
A // MatrixForm
D_n root systems
(* A_n type Cartan matrix *)
r := 2
rt[i_] := UnitVector[r + 1, i] - UnitVector[r + 1, i + 1]
a[i_, j_] := (2 Dot[rt[i], rt[j]])/Dot[rt[j], rt[j]]
A := Table[a[i, j], {i, 1, r}, {j, 1, r}]
A // MatrixForm