"Cyclotomic numbers and Chebyshev polynomials"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
잔글 (찾아 바꾸기 – “분류:개인노트분류:개인노트” 문자열을 “분류:개인노트” 문자열로)
imported>Pythagoras0
2번째 줄: 2번째 줄:
  
 
* borrowed from [[Andrews-Gordon identity]]
 
* borrowed from [[Andrews-Gordon identity]]
*  quantum dimension and thier recurrence relation<br><math>d_i=\frac{\sin \frac{(i+1)\pi}{k+2}}{\sin \frac{\pi}{k+2}}}</math> satisfies<br><math>d_i^2=1+d_{i-1}d_{i+1}</math> where <math>d_0=1</math>, <math>d_k=1</math><br>
+
*  quantum dimension and thier recurrence relation
 +
:<math>d_i=\frac{\sin \frac{(i+1)\pi}{k+2}}{\sin \frac{\pi}{k+2}}</math> satisfies
 +
:<math>d_i^2=1+d_{i-1}d_{i+1}</math> where <math>d_0=1</math>, <math>d_k=1</math><br>
  
 
 
 
 
41번째 줄: 43번째 줄:
  
 
* [[sl(2) - orthogonal polynomials and Lie theory]]
 
* [[sl(2) - orthogonal polynomials and Lie theory]]
 
 
 
 
 
 
 
==encyclopedia==
 
 
* http://ko.wikipedia.org/wiki/
 
* http://en.wikipedia.org/wiki/
 
 
 
 
 
 
 
 
 
==books==
 
 
 
 
 
* [[2010년 books and articles]]<br>
 
* http://gigapedia.info/1/
 
* http://gigapedia.info/1/
 
* http://www.amazon.com/s/ref=nb_ss_gw?url=search-alias%3Dstripbooks&field-keywords=
 
  
 
 
 
 
74번째 줄: 53번째 줄:
 
** Peter Steinbach, Mathematics Magazine Vol. 70, No. 1 (Feb., 1997), pp. 22-31
 
** Peter Steinbach, Mathematics Magazine Vol. 70, No. 1 (Feb., 1997), pp. 22-31
  
 
* http://www.ams.org/mathscinet
 
* http://www.zentralblatt-math.org/zmath/en/
 
* http://pythagoras0.springnote.com/
 
* [http://math.berkeley.edu/%7Ereb/papers/index.html http://math.berkeley.edu/~reb/papers/index.html]
 
* http://front.math.ucdavis.edu/search?a=&t=&c=&n=40&s=Listings&q=
 
* http://www.ams.org/mathscinet/search/publications.html?pg4=AUCN&s4=&co4=AND&pg5=TI&s5=&co5=AND&pg6=PC&s6=&co6=AND&pg7=ALLF&co7=AND&Submit=Search&dr=all&yrop=eq&arg3=&yearRangeFirst=&yearRangeSecond=&pg8=ET&s8=All&s7=
 
* http://dx.doi.org/
 
 
 
 
 
 
 
 
==question and answers(Math Overflow)==
 
 
* http://mathoverflow.net/search?q=
 
* http://mathoverflow.net/search?q=
 
 
 
 
 
 
 
 
==blogs==
 
 
*  구글 블로그 검색<br>
 
** http://blogsearch.google.com/blogsearch?q=
 
** http://blogsearch.google.com/blogsearch?q=
 
 
 
 
 
 
 
 
==experts on the field==
 
 
* http://arxiv.org/
 
 
 
 
 
 
 
 
==links==
 
 
* [http://detexify.kirelabs.org/classify.html Detexify2 - LaTeX symbol classifier]
 
* [http://pythagoras0.springnote.com/pages/1947378 수식표 현 안내]
 
* [http://www.research.att.com/%7Enjas/sequences/index.html The On-Line Encyclopedia of Integer Sequences]
 
 
[[분류:개인노트]]
 
[[분류:개인노트]]
 
[[Category:research topics]]
 
[[Category:research topics]]
 
[[Category:quantum dimensions]]
 
[[Category:quantum dimensions]]

2013년 8월 5일 (월) 04:31 판

introduction

\[d_i=\frac{\sin \frac{(i+1)\pi}{k+2}}{\sin \frac{\pi}{k+2}}\] satisfies \[d_i^2=1+d_{i-1}d_{i+1}\] where \(d_0=1\), \(d_k=1\)

 

  1. (*choose k for c (2,k+2) minimal model*)k := 11
    d[k_, i_] := Sin[(i + 1) Pi/(k + 2)]/Sin[Pi/(k + 2)]
    Table[{i, d[k, i]}, {i, 1, k}] // TableForm
    Table[{i, N[(d[k, i])^2 - (1 + d[k, i - 1]*d[k, i + 1]), 10]}, {i, 1,
       k}] // TableForm
  2. Plot[d[k, i], {i, 0, 2 k}]

 

 

diagonals of polygon

Clear[r]
r[i_] := Sin[((i + 1) Pi)/7]/Sin[Pi/7]
Table[N[r[i], 10], {i, 0, 5}]
Table[N[r[i]^2 - (1 + r[i - 1] r[i + 1]), 10], {i, 1, 4}]

 

 

chebyshev polynomials

 

 

history

 

 

related items

 

 

articles