"Galois symmetry in the WZW fusion ring"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
imported>Pythagoras0 |
imported>Pythagoras0 |
||
4번째 줄: | 4번째 줄: | ||
* Gannon, Terry. 1995. “Symmetries of the Kac-Peterson Modular Matrices of Affine Algebras.” Inventiones Mathematicae 122 (2): 341–357. doi:10.1007/BF01231448. http://dx.doi.org/10.1007/BF01231448 | * Gannon, Terry. 1995. “Symmetries of the Kac-Peterson Modular Matrices of Affine Algebras.” Inventiones Mathematicae 122 (2): 341–357. doi:10.1007/BF01231448. http://dx.doi.org/10.1007/BF01231448 | ||
* Fuchs, Jürgen, Beatriz Gato-Rivera, Bert Schellekens, and Christoph Schweigert. 1994. “Modular Invariants and Fusion Rule Automorphisms from Galois Theory.” Physics Letters. B 334 (1-2): 113–120. doi:10.1016/0370-2693(94)90598-3. | * Fuchs, Jürgen, Beatriz Gato-Rivera, Bert Schellekens, and Christoph Schweigert. 1994. “Modular Invariants and Fusion Rule Automorphisms from Galois Theory.” Physics Letters. B 334 (1-2): 113–120. doi:10.1016/0370-2693(94)90598-3. | ||
− | * | + | * Coste, A., and T. Gannon. “Remarks on Galois Symmetry in Rational Conformal Field Theories.” Physics Letters B 323, no. 3–4 (March 17, 1994): 316–21. doi:10.1016/0370-2693(94)91226-2 http://dx.doi.org/10.1016/0370-2693%2894%2991226-2 |
+ | * Boer, Jan de, and Jacob Goeree. “Markov Traces and ${\rm II}_1$ Factors in Conformal Field Theory.” Communications in Mathematical Physics 139, no. 2 (1991): 267–304. | ||
* WZW commutants, lattices and level-one partition functions http://www.sciencedirect.com/science/article/pii/055032139390669G | * WZW commutants, lattices and level-one partition functions http://www.sciencedirect.com/science/article/pii/055032139390669G | ||
* Ph. Ruelle, E. Thiran and J. Weyers, Implications of an arithmetical symmetry of the commutant for modular invariants, Nucl. Phys., Vol. B 402, 1993, pp | * Ph. Ruelle, E. Thiran and J. Weyers, Implications of an arithmetical symmetry of the commutant for modular invariants, Nucl. Phys., Vol. B 402, 1993, pp |
2015년 12월 15일 (화) 14:44 판
articles
- Jürgen Fuchs, Bert Schellekens and Christoph Schweigert, Quasi-Galois symmetries of the modularS-matrix 1996
- Fuchs, J., A. N. Schellekens, and C. Schweigert. 1995. “Galois Modular Invariants of WZW Models.” Nuclear Physics. B 437 (3): 667–694. doi:10.1016/0550-3213(94)00577-2.
- Gannon, Terry. 1995. “Symmetries of the Kac-Peterson Modular Matrices of Affine Algebras.” Inventiones Mathematicae 122 (2): 341–357. doi:10.1007/BF01231448. http://dx.doi.org/10.1007/BF01231448
- Fuchs, Jürgen, Beatriz Gato-Rivera, Bert Schellekens, and Christoph Schweigert. 1994. “Modular Invariants and Fusion Rule Automorphisms from Galois Theory.” Physics Letters. B 334 (1-2): 113–120. doi:10.1016/0370-2693(94)90598-3.
- Coste, A., and T. Gannon. “Remarks on Galois Symmetry in Rational Conformal Field Theories.” Physics Letters B 323, no. 3–4 (March 17, 1994): 316–21. doi:10.1016/0370-2693(94)91226-2 http://dx.doi.org/10.1016/0370-2693%2894%2991226-2
- Boer, Jan de, and Jacob Goeree. “Markov Traces and ${\rm II}_1$ Factors in Conformal Field Theory.” Communications in Mathematical Physics 139, no. 2 (1991): 267–304.
- WZW commutants, lattices and level-one partition functions http://www.sciencedirect.com/science/article/pii/055032139390669G
- Ph. Ruelle, E. Thiran and J. Weyers, Implications of an arithmetical symmetry of the commutant for modular invariants, Nucl. Phys., Vol. B 402, 1993, pp