"팽르베 미분방정식(Painlevé Equations)"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
(section '관련논문' updated)
29번째 줄: 29번째 줄:
  
 
==관련논문==
 
==관련논문==
* Takao Suzuki, A generalization of the $q$-Painlevé VI equation from a viewpoint of a particular solution in terms of the $q$-hypergeometric function, arXiv:1602.01573[math-ph], February 04 2016, http://arxiv.org/abs/1602.01573v4
+
* Takao Suzuki, A generalization of the <math>q</math>-Painlevé VI equation from a viewpoint of a particular solution in terms of the <math>q</math>-hypergeometric function, arXiv:1602.01573[math-ph], February 04 2016, http://arxiv.org/abs/1602.01573v4
 
* Brezhnev, Yurii V. “The Sixth Painleve Transcendent and Uniformization of Algebraic Curves.” Journal of Differential Equations 260, no. 3 (February 2016): 2507–56. doi:10.1016/j.jde.2015.10.009.
 
* Brezhnev, Yurii V. “The Sixth Painleve Transcendent and Uniformization of Algebraic Curves.” Journal of Differential Equations 260, no. 3 (February 2016): 2507–56. doi:10.1016/j.jde.2015.10.009.
 
* Kajiwara, Kenji, Masatoshi Noumi, and Yasuhiko Yamada. “Geometric Aspects of Painlev’e Equations.” arXiv:1509.08186 [math-Ph, Physics:nlin], September 27, 2015. http://arxiv.org/abs/1509.08186.
 
* Kajiwara, Kenji, Masatoshi Noumi, and Yasuhiko Yamada. “Geometric Aspects of Painlev’e Equations.” arXiv:1509.08186 [math-Ph, Physics:nlin], September 27, 2015. http://arxiv.org/abs/1509.08186.
  
 
[[분류:미분방정식]]
 
[[분류:미분방정식]]

2020년 11월 12일 (목) 22:01 판

개요

  • Painlevé I-VI
  • II\[\frac{d^2y}{dt^2} = 2 y^3 + ty + \alpha \]

 

메모



사전 형태의 자료


관련링크 및 웹페이지


리뷰, 에세이, 강의노트

  • Guzzetti, Davide. “A Review on The Sixth Painleve’ Equation.” Constructive Approximation 41, no. 3 (June 2015): 495–527. doi:10.1007/s00365-014-9250-6.


관련논문

  • Takao Suzuki, A generalization of the \(q\)-Painlevé VI equation from a viewpoint of a particular solution in terms of the \(q\)-hypergeometric function, arXiv:1602.01573[math-ph], February 04 2016, http://arxiv.org/abs/1602.01573v4
  • Brezhnev, Yurii V. “The Sixth Painleve Transcendent and Uniformization of Algebraic Curves.” Journal of Differential Equations 260, no. 3 (February 2016): 2507–56. doi:10.1016/j.jde.2015.10.009.
  • Kajiwara, Kenji, Masatoshi Noumi, and Yasuhiko Yamada. “Geometric Aspects of Painlev’e Equations.” arXiv:1509.08186 [math-Ph, Physics:nlin], September 27, 2015. http://arxiv.org/abs/1509.08186.