"Electromagnetics"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
12번째 줄: 12번째 줄:
 
*  has two possibilites<br>
 
*  has two possibilites<br>
 
** what does this mean?
 
** what does this mean?
 +
 +
 
  
 
 
 
 
37번째 줄: 39번째 줄:
 
*  vector potential<br> from <math>\nabla \cdot \mathbf{B} = 0</math>, we can find a vector potential such that <math>\mathbf{B}=\nabla \times \mathbf{A}</math><br>
 
*  vector potential<br> from <math>\nabla \cdot \mathbf{B} = 0</math>, we can find a vector potential such that <math>\mathbf{B}=\nabla \times \mathbf{A}</math><br>
 
*  scalar potential<br><math>E=-\frac{\partial\mathbf{A}}{\partial t} - \nabla \phi </math><br>
 
*  scalar potential<br><math>E=-\frac{\partial\mathbf{A}}{\partial t} - \nabla \phi </math><br>
 +
 +
 
  
 
 
 
 
42번째 줄: 46번째 줄:
 
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">four-current</h5>
 
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">four-current</h5>
  
* charge density and current density
+
* charge density and current density<br>
 +
 
 +
:
 +
<math>J^a = \left(c \rho, \mathbf{j} \right)</math>
  
: <math>J^a = \left(c \rho, \mathbf{j} \right)</math>
 
  
 
where
 
where
55번째 줄: 61번째 줄:
 
 
 
 
  
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">four vector potential</h5>
+
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">electromagnetic field</h5>
 
 
*  this is what we call the electromagnetic field<br><math>A_{\alpha} = \left( - \phi/c, \mathbf{A} \right)</math><br> φ is the scalar potential and <math>A</math>  is the vector potential.<br>
 
 
 
 
 
 
 
 
 
  
<h5>electromagnetic field</h5>
+
*  alfour<br> this is what we call the electromagnetic field<br><math>A_{\alpha} = \left( - \phi/c, \mathbf{A} \right)</math><br> φ is the scalar potential and <math>A</math>  is the vector potential.<br>
  
 
* an example of four-vector
 
* an example of four-vector
71번째 줄: 71번째 줄:
 
 
 
 
  
<br>
+
 
  
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">Covariant formulation</h5>
+
 
  
*  electromagnetic field strength<br><math>F_{\alpha \beta} = \partial_{\alpha} A_{\beta} - \partial_{\beta} A_{\alpha}</math><br>
+
<h5>Covariant formulation</h5>
  
<math>F_{\alpha \beta} = \left( \begin{matrix} 0 &  \frac{E_x}{c} &  \frac{E_y}{c} &  \frac{E_z}{c} \\ \frac{-E_x}{c} & 0 & -B_z & B_y \\ \frac{-E_y}{c}  & B_z & 0 & -B_x \\ \frac{-E_z}{c} & -B_y & B_x & 0 \end{matrix} \right)</math>
+
*  electromagnetic field strength<br><math>F_{\alpha \beta} = \partial_{\alpha} A_{\beta} - \partial_{\beta} A_{\alpha}</math><br><math>F_{\alpha \beta} = \left( \begin{matrix} 0 &  \frac{E_x}{c} &  \frac{E_y}{c} &  \frac{E_z}{c} \\ \frac{-E_x}{c} & 0 & -B_z & B_y \\ \frac{-E_y}{c}  & B_z & 0 & -B_x \\ \frac{-E_z}{c} & -B_y & B_x & 0 \end{matrix} \right)</math><br>
  
 
 
 
 
85번째 줄: 85번째 줄:
 
<h5 style="line-height: 2em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px;">Weyl's gauge theoretic formulation</h5>
 
<h5 style="line-height: 2em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px;">Weyl's gauge theoretic formulation</h5>
  
 <br>
+
the electromagnetic potential is a connection on a U(1)-bundle on spacetime whose curvature is the electromagnetic field<br>
 +
*  the electromagnetism is a gauge field theory with structure group U(1)<br>
  
 
 
 
 

2010년 2월 3일 (수) 07:29 판

Lorentz force
  • almost all forces in mechanics are conservative forces, those that are functions nly of positions, and certainly not functions of velocities
  • Lorentz force is a rare example of velocity dependent force

 

 

polarization of light
  • has two possibilites
    • what does this mean?

 

 

Maxwell's equations
  • using vector calculus notation
    \(\nabla \cdot \mathbf{E} = \frac {\rho} {\varepsilon_0}\)
    \(\nabla \cdot \mathbf{B} = 0\)
    \(\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}} {\partial t}\)
    \(\nabla \times \mathbf{B} = \mu_0\mathbf{J} + \mu_0 \varepsilon_0 \frac{\partial \mathbf{E}} {\partial t}\ \)

 

 

charge density and current density

 

 

potentials
  • vector potential
    from \(\nabla \cdot \mathbf{B} = 0\), we can find a vector potential such that \(\mathbf{B}=\nabla \times \mathbf{A}\)
  • scalar potential
    \(E=-\frac{\partial\mathbf{A}}{\partial t} - \nabla \phi \)

 

 

four-current
  • charge density and current density

\[J^a = \left(c \rho, \mathbf{j} \right)\]


where

c is the speed of light
ρ the charge density
j the conventional current density.
a labels the space-time dimensions

 

electromagnetic field
  • alfour
    this is what we call the electromagnetic field
    \(A_{\alpha} = \left( - \phi/c, \mathbf{A} \right)\)
    φ is the scalar potential and \(A\)  is the vector potential.
  • an example of four-vector
  • gague field describing the photon
  • composed of a scalar electric potential and a three-vector magnetic potential

 

 

 

Covariant formulation
  • electromagnetic field strength
    \(F_{\alpha \beta} = \partial_{\alpha} A_{\beta} - \partial_{\beta} A_{\alpha}\)
    \(F_{\alpha \beta} = \left( \begin{matrix} 0 & \frac{E_x}{c} & \frac{E_y}{c} & \frac{E_z}{c} \\ \frac{-E_x}{c} & 0 & -B_z & B_y \\ \frac{-E_y}{c} & B_z & 0 & -B_x \\ \frac{-E_z}{c} & -B_y & B_x & 0 \end{matrix} \right)\)

 

 

Weyl's gauge theoretic formulation
  • the electromagnetic potential is a connection on a U(1)-bundle on spacetime whose curvature is the electromagnetic field
  • the electromagnetism is a gauge field theory with structure group U(1)

 

 

 

메모

 

 

참고할만한 자료