"Electromagnetics"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
53번째 줄: 53번째 줄:
 
*  in covariant formulation, this is a '''1-form'''<br><math>A=A_{0}dx^{0}+A_{1}dx^{1}+A_{2}dx^{2}+A_{3}dx^{3}</math><br>
 
*  in covariant formulation, this is a '''1-form'''<br><math>A=A_{0}dx^{0}+A_{1}dx^{1}+A_{2}dx^{2}+A_{3}dx^{3}</math><br>
 
* gague field describing the photon
 
* gague field describing the photon
 +
 +
 
  
 
 
 
 
68번째 줄: 70번째 줄:
  
 
* this is necessary for Maxwell equations with sources
 
* this is necessary for Maxwell equations with sources
* describes the distribution and mo
+
* describes the distribution and motion of charged particles
 
* charge density <math>{\rho} </math> (for point charge, density will be a Dirac delta function)
 
* charge density <math>{\rho} </math> (for point charge, density will be a Dirac delta function)
 
* current density <math>\mathbf{J}=(J_x,J_y,J_z)</math>
 
* current density <math>\mathbf{J}=(J_x,J_y,J_z)</math>

2012년 1월 15일 (일) 12:29 판

Lorentz force
  • almost all forces in mechanics are conservative forces, those that are functions only of positions, and certainly not functions of velocities
  • Lorentz force is a rare example of velocity dependent force

 

 

polarization of light
  • has two possibilites
    • what does this mean?

 

 

notations
  • vector potential \(\mathbf{A}(x,y,z,t)=(A_{x},A_{y},A_{z})\)
  • electrostatic potential \(\phi(x,y,z,t)\) (scalar)
  • electric field \(\mathbf{E}(x,y,z,t)\)
  • magnetic field \(\mathbf{B}(x,y,z,t)\)
  • charge density \({\rho} \) (for point charge, density will be a Dirac delta function)
  • current density \(\mathbf{J}=(J_x,J_y,J_z)\)
  • \(\mu_0\)
  • \(\varepsilon_0\)
  • \(c = \frac{1}{\sqrt{\mu_0 \varepsilon_0}}\)

 

 

Maxwell's equations
  • using vector calculus notation
    \(\nabla \cdot \mathbf{E} = \frac {\rho} {\varepsilon_0}\)
    \(\nabla \cdot \mathbf{B} = 0\)
    \(\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}} {\partial t}\)
    \(\nabla \times \mathbf{B} = \mu_0\mathbf{J} + \mu_0 \varepsilon_0 \frac{\partial \mathbf{E}} {\partial t}\ \)

 

 

potentials
  • vector potential \(A\)
    from \(\nabla \cdot \mathbf{B} = 0\), we can find a vector potential such that \(\mathbf{B}=\nabla \times \mathbf{A}\)
  • scalar potential \(\phi\)
    \(\mathbf{E}=-\frac{\partial\mathbf{A}}{\partial t} - \nabla \phi \)

 

electromagnetic field (four vector potential)
  • defined as follows
    \(A_{\alpha} = \left( - \phi, \mathbf{A} \right)=(-\phi,A_{x},A_{y},A_{z})\)
    \(\phi\) is the scalar potential
    \(A\)  is the vector potential.
  • in covariant formulation, this is a 1-form
    \(A=A_{0}dx^{0}+A_{1}dx^{1}+A_{2}dx^{2}+A_{3}dx^{3}\)
  • gague field describing the photon

 

 

electromagnetic field strength
  • in covariant formulation, this is a  2-form
  • \(F=F_{01}dx^{0}\wedge dx^{1}+F_{02}dx^{0}\wedge dx^{2}+\cdots\)

 

 

conserved four-current
  • this is necessary for Maxwell equations with sources
  • describes the distribution and motion of charged particles
  • charge density \({\rho} \) (for point charge, density will be a Dirac delta function)
  • current density \(\mathbf{J}=(J_x,J_y,J_z)\)
  • charge density and current density
    \(J^a = \left(c \rho, \mathbf{J} \right)\)
  • four vector is called a conserved current if \(\partial_{a}J^{a}=0\)
  • in covariant formulation, this is a 3-form
    \(J=\rho dx\wedge dy \wedge dz - J_{z}dx\wedge dy \wedge dt -J_{x}dy\wedge dz\wedge dt-J_{y}dz\wedge dx\wedge dt\)

 

 

 

covariant formulation  using differential form
  • electromagnetic field strength
    \(F_{\mu\nu} = \partial_\mu A_\nu - \partial_\nu A_\mu \,\!\)
    \(F_{\alpha \beta} = \left( \begin{matrix} 0 & \frac{E_x}{c} & \frac{E_y}{c} & \frac{E_z}{c} \\ \frac{-E_x}{c} & 0 & -B_z & B_y \\ \frac{-E_y}{c} & B_z & 0 & -B_x \\ \frac{-E_z}{c} & -B_y & B_x & 0 \end{matrix} \right)\)
  • \(F_{01}=\partial_{0} A_{1} - \partial_{1} A_{0}=\partial_{t} A_{x} +\partial_{x} \phi=E_{x}\)
  • \(F_{12}=-\partial_{1} A_{2} + \partial_{2} A_{1}=-\partial_{x} A_{y} + \partial_{y} A_{x}=-B_{z}\)
  • In Gauge theory, we regard F as 2-form, A as 1-form
  • \(A=A_{0}dx^{0}+A_{1}dx^{1}+A_{2}dx^{2}+A_{3}dx^{3}\)
  • \(F=F_{01}dx^{0}\wedge dx^{1}+F_{02}dx^{0}\wedge dx^{2}+\cdots\)
  • \(J=(-\rho,J_1,J_2,J_3)\)
  • Maxwell's equation can be recast into
    • \(dF=0\) (\(\nabla \cdot \mathbf{B} = 0\), \(\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}} {\partial t}\))
    • \(d*F=J\) (\(\nabla \cdot \mathbf{E} = \frac {\rho} {\varepsilon_0}\),  \(\nabla \times \mathbf{B} = \mu_0\mathbf{J} + \mu_0 \varepsilon_0 \frac{\partial \mathbf{E}} {\partial t}\ \))
       
  • See Introduction to differential forms

 

 

 

 

Lagrangian formulation
  • Lagrangian for a charged particle in an electromagnetic field
    \(L=T-V\)
    \(L(q,\dot{q})=m||\dot{q}||-e\phi+eA_{i}\dot{q}^{i}\)
  • action
    \(S=-\frac{1}{4}\int F^{\alpha\beta}F_{\alpha\beta}\,d^{4}x\)
  • Euler-Lagrange equations
    \(p_{i}=\frac{\partial{L}}{\partial{\dot{q}^{i}}}=m\frac{\dot{q}_{i}}{||\dot{q}_{i}||}+eA_{i}=mv_{i}+eA_{i}\)
    \(F_{i}=\frac{\partial{L}}{\partial{{q}^{i}}}=\frac{\partial}{\partial{{q}^{i}}}(eA_{j}\dot{q}^{j})=e\frac{\partial{A_{j}}}{\partial{q}^{i}}\dot{q}^{j}}}\)
  • equation of motion
    \(\dot{p}=F\) Therefore we get
    \(m\frac{dv_{i}}{dt}=eF_{ij}\dot{q}^{j}\). This is what we call the Lorentz force law.
  • force on a particle is same as \(e\mathbf{E}+e\mathbf{v}\times \mathbf{B}\)

 

 

Hamiltonian formulation
  • total energy of a charge particle in an electromagnetic field
    \(E=\frac{1}{2m}(p_j-eA_{j})(p_j-eA_j)+q\phi\)
  • replace the momentum with the canonical momentum
    • similar to covariant derivative

 

 

force on a particle
  • force on a particle is same as \(e\mathbf{E}+e\mathbf{v}\times \mathbf{B}\)

 

 

 

gauge transformation
  • For any scalar field \(\Lambda(x,y,z,t)\), the following transformation does not change any physical quantity
    \(\mathbf{A} \to \mathbf{A} +\del \Lambda\)
    \(\phi\to \phi-\frac{\partial\Lambda}{\partial t}\)
  • unchanged quantities
    \(\mathbf{B}=\nabla \times \mathbf{A}\)
    \(\mathbf{E}=-\frac{\partial\mathbf{A}}{\partial t} - \nabla \phi \)
  • the electromagnetic potential is a connection on a U(1)-bundle on spacetime whose curvature is the electromagnetic field
  • the electromagnetism is a gauge field theory with structure group U(1)

 

 

 

 

메모

 

 

related items

 

encyclopedia

 

 

books

ELECTROMAGNETIC THEORY AND COMPUTATION