"Electromagnetics"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
14번째 줄: 14번째 줄:
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
*  broken [http://resources.aims.ac.za/archive/2009/solomon.pdf Maxwell's Equations in Terms of Dierential Forms]<br>
 
* [http://www22.pair.com/csdc/pd2/pd2fre21.htm Maxwell Theory and Differential Forms]<br>
 
** [http://www22.pair.com/csdc/pdf/maxwell.pdf http://www22.pair.com/csdc/]<br>
 
** [http://www22.pair.com/csdc/pdf/maxwell.pdf Maxwell Faraday and Maxwell Ampere Equations]<br>
 
* http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.117.7828&rep=rep1&type=pdf
 
  
 
 
 
 
59번째 줄: 47번째 줄:
  
 
* force on a particle is same as <math>e\mathbf{E}+e\mathbf{v}\times \mathbf{B}</math>
 
* force on a particle is same as <math>e\mathbf{E}+e\mathbf{v}\times \mathbf{B}</math>
 
 
 
 
 
 
 
 
 
 
<h5 style="margin: 0px; line-height: 2em;">gauge transformation</h5>
 
 
*  For any scalar field <math>\Lambda(x,y,z,t)</math>, the following transformation does not change any physical quantity<br><math>\mathbf{A} \to \mathbf{A} +\del \Lambda</math><br><math>\phi\to \phi-\frac{\partial\Lambda}{\partial t}</math><br>
 
*  unchanged quantities<br><math>\mathbf{B}=\nabla \times \mathbf{A}</math><br><math>\mathbf{E}=-\frac{\partial\mathbf{A}}{\partial t} - \nabla \phi </math><br>
 
 
*  the electromagnetic potential is a connection on a U(1)-bundle on spacetime whose curvature is the electromagnetic field<br>
 
*  the electromagnetism is a gauge field theory with structure group U(1)<br>
 
  
 
 
 
 
95번째 줄: 69번째 줄:
 
* [[Gauge theory]]<br>
 
* [[Gauge theory]]<br>
 
* [[QED]]<br>
 
* [[QED]]<br>
 +
 +
 
  
 
 
 
 
112번째 줄: 88번째 줄:
 
 
 
 
  
books
+
<h5 style="margin: 0px; line-height: 2em;">books</h5>
  
 
ELECTROMAGNETIC THEORY AND COMPUTATION
 
ELECTROMAGNETIC THEORY AND COMPUTATION

2012년 7월 17일 (화) 16:01 판

Lorentz force
  • almost all forces in mechanics are conservative forces, those that are functions only of positions, and certainly not functions of velocities
  • Lorentz force is a rare example of velocity dependent force

 

 

polarization of light
  • has two possibilites
    • what does this mean?

 

 

 

Lagrangian formulation
  • Lagrangian for a charged particle in an electromagnetic field
    \(L=T-V\)
    \(L(q,\dot{q})=m||\dot{q}||-e\phi+eA_{i}\dot{q}^{i}\)
  • action
    \(S=-\frac{1}{4}\int F^{\alpha\beta}F_{\alpha\beta}\,d^{4}x\)
  • Euler-Lagrange equations
    \(p_{i}=\frac{\partial{L}}{\partial{\dot{q}^{i}}}=m\frac{\dot{q}_{i}}{||\dot{q}_{i}||}+eA_{i}=mv_{i}+eA_{i}\)
    \(F_{i}=\frac{\partial{L}}{\partial{{q}^{i}}}=\frac{\partial}{\partial{{q}^{i}}}(eA_{j}\dot{q}^{j})=e\frac{\partial{A_{j}}}{\partial{q}^{i}}\dot{q}^{j}}}\)
  • equation of motion
    \(\dot{p}=F\) Therefore we get
    \(m\frac{dv_{i}}{dt}=eF_{ij}\dot{q}^{j}\). This is what we call the Lorentz force law.
  • force on a particle is same as \(e\mathbf{E}+e\mathbf{v}\times \mathbf{B}\)

 

 

Hamiltonian formulation
  • total energy of a charge particle in an electromagnetic field
    \(E=\frac{1}{2m}(p_j-eA_{j})(p_j-eA_j)+q\phi\)
  • replace the momentum with the canonical momentum
    • similar to covariant derivative

 

 

force on a particle
  • force on a particle is same as \(e\mathbf{E}+e\mathbf{v}\times \mathbf{B}\)

 

 

 

 

메모

 

 

related items

 

 

encyclopedia

 

 

books

ELECTROMAGNETIC THEORY AND COMPUTATION