"Characters of superconformal algebra and mock theta functions"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
imported>Pythagoras0 |
imported>Pythagoras0 |
||
1번째 줄: | 1번째 줄: | ||
==introduction== | ==introduction== | ||
+ | |||
+ | ==$\mathcal{N}=4$ superconformal algebra== | ||
+ | |||
+ | |||
+ | |||
+ | ===$c=6k$ with $k=1$ case=== | ||
+ | * non-BPS characters : $h>k/4,\ell=1/2$ | ||
+ | $$ | ||
+ | \operatorname{ch}^{\tilde R}_{h=1/4+n,\ell=0} | ||
+ | $$ | ||
+ | * BPS characters : $h=1/4,\ell=0,1/2$ | ||
+ | $$ | ||
+ | \operatorname{ch}^{\tilde R}_{h=1/4,\ell=0}=\frac{[\theta_{11}(z;\tau)]^2}{\eta^3}\mu(z;\tau)\\ | ||
+ | \operatorname{ch}^{\tilde R}_{h=1/4,\ell=1/2} | ||
+ | $$ | ||
+ | where $\mu(z;\tau)$ is the [[Appell-Lerch sums]] which is a holomorphic part of a mock modular form | ||
+ | * this is related to [[Mathieu moonshine]] and the elliptic genus of K3 surface | ||
+ | |||
+ | |||
+ | ===$k\geq 2$ case=== | ||
+ | * this is related to [[Umbral moonshine]] and elliptic genus of hyperKahler manifolds of complex dimension $2k$ | ||
2013년 7월 26일 (금) 08:32 판
introduction
$\mathcal{N}=4$ superconformal algebra
$c=6k$ with $k=1$ case
- non-BPS characters : $h>k/4,\ell=1/2$
$$ \operatorname{ch}^{\tilde R}_{h=1/4+n,\ell=0} $$
- BPS characters : $h=1/4,\ell=0,1/2$
$$ \operatorname{ch}^{\tilde R}_{h=1/4,\ell=0}=\frac{[\theta_{11}(z;\tau)]^2}{\eta^3}\mu(z;\tau)\\ \operatorname{ch}^{\tilde R}_{h=1/4,\ell=1/2} $$ where $\mu(z;\tau)$ is the Appell-Lerch sums which is a holomorphic part of a mock modular form
- this is related to Mathieu moonshine and the elliptic genus of K3 surface
$k\geq 2$ case
- this is related to Umbral moonshine and elliptic genus of hyperKahler manifolds of complex dimension $2k$
history
encyclopedia
- http://en.wikipedia.org/wiki/N_%3D_2_superconformal_algebra
- http://en.wikipedia.org/wiki/Super_Virasoro_algebra
- http://www.scholarpedia.org/
articles
- Superconformal Algebras and Mock Theta Functions
- Tohru Eguchi and Kazuhiro Hikami, 2009
- N = 2 superconformal minimal models
- Yutaka Matsuo Character Formula of C<1 Unitary representation of N=2 Superconformal Algebra , Prog. Theor. Phys. Vol. 77 No. 4 (1987) pp. 793-797