"Characters of superconformal algebra and mock theta functions"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
imported>Pythagoras0
67번째 줄: 67번째 줄:
 
* Eguchi, Tohru, Hirosi Ooguri, Anne Taormina, and Sung-Kil Yang. 1989. “Superconformal Algebras and String Compactification on Manifolds with SU(n) Holonomy.” Nuclear Physics B 315 (1) (March 13): 193–221. doi:[http://dx.doi.org/10.1016/0550-3213(89)90454-9 10.1016/0550-3213(89)90454-9].
 
* Eguchi, Tohru, Hirosi Ooguri, Anne Taormina, and Sung-Kil Yang. 1989. “Superconformal Algebras and String Compactification on Manifolds with SU(n) Holonomy.” Nuclear Physics B 315 (1) (March 13): 193–221. doi:[http://dx.doi.org/10.1016/0550-3213(89)90454-9 10.1016/0550-3213(89)90454-9].
 
* Yutaka Matsuo [http://ptp.ipap.jp/link?PTP/77/793/ Character Formula of C<1 Unitary representation of N=2 Superconformal Algebra] , Prog. Theor. Phys. Vol. 77 No. 4 (1987) pp. 793-797
 
* Yutaka Matsuo [http://ptp.ipap.jp/link?PTP/77/793/ Character Formula of C<1 Unitary representation of N=2 Superconformal Algebra] , Prog. Theor. Phys. Vol. 77 No. 4 (1987) pp. 793-797
 +
[[분류:migrate]]

2020년 11월 12일 (목) 22:33 판

introduction

$\mathcal{N}=4$ superconformal algebra

generators and relations

$$[L_m,L_n]=(m-n)L_{m+n}+\frac{c}{12}(m^3-m)\delta_{m+n}$$

$$[J_m^i,J_n^j]=\epsilon_{ijk}J_{m+n}^k+\delta_{m+n}\delta^{i,j}\frac{c}{3},\quad i,j,k\in \{1,2,3\},\quad m,n\in \mathbb{Z}$$ $$[L_m,J_n^i]=-nJ_{m+n}^i,\quad m,n\in \mathbb{Z}$$

  • fermionic operators

$$ G_r^a,\overline{G}_s^b,\quad a,b\in \{1,2\} $$

$c=6k$ with $k=1$ case

  • non-BPS characters : $h>k/4,\ell=1/2$

$$ \operatorname{ch}^{\tilde R}_{h=1/4+n,\ell=0}=q^{h-3/8}\frac{[\theta_{11}(z;\tau)]^2}{\eta^3}=q^{n-1/8}\frac{[\theta_{11}(z;\tau)]^2}{\eta^3} $$

  • BPS characters : $h=1/4,\ell=0,1/2$

$$ \operatorname{ch}^{\tilde R}_{h=1/4,\ell=0}=\frac{[\theta_{11}(z;\tau)]^2}{\eta^3}\mu(z;\tau)\\ \operatorname{ch}^{\tilde R}_{h=1/4,\ell=1/2}+2\operatorname{ch}^{\tilde R}_{h=1/4,\ell=0}=q^{-1/8}\frac{[\theta_{11}(z;\tau)]^2}{\eta^3} $$ where $\mu(z;\tau)$ is the Appell-Lerch sums which is a holomorphic part of a mock modular form


$k\geq 2$ case

  • this is related to Umbral moonshine and elliptic genus of hyperKahler manifolds of complex dimension $2k$




history



related items


encyclopedia


articles