"Belyi map"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
3번째 줄: | 3번째 줄: | ||
* Belyi's theorem on algebraic curves<br> | * Belyi's theorem on algebraic curves<br> | ||
** any non-singular algebraic curve C, defined by algebraic number coefficients, represents a compact Riemann surface which is a ramified covering of the Riemann sphere, ramified at three points only. | ** any non-singular algebraic curve C, defined by algebraic number coefficients, represents a compact Riemann surface which is a ramified covering of the Riemann sphere, ramified at three points only. | ||
+ | * Belyi map gives rise to a projective curve | ||
11번째 줄: | 12번째 줄: | ||
* Belyi map f:\mathbb{P}^1\to \mathbb{P}^1 defined by z\mapsto z^2 | * Belyi map f:\mathbb{P}^1\to \mathbb{P}^1 defined by z\mapsto z^2 | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | <h5>Grobner techniques</h5> | ||
+ | |||
* | * | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | <h5>complex analytic method</h5> | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | <h5>p-adic method</h5> | ||
2012년 3월 8일 (목) 08:28 판
introduction
- Belyi's theorem on algebraic curves
- any non-singular algebraic curve C, defined by algebraic number coefficients, represents a compact Riemann surface which is a ramified covering of the Riemann sphere, ramified at three points only.
- Belyi map gives rise to a projective curve
Belyi maps of degree 2
- Belyi map f:\mathbb{P}^1\to \mathbb{P}^1 defined by z\mapsto z^2
Grobner techniques
complex analytic method
p-adic method
history
encyclopedia
- http://en.wikipedia.org/wiki/Dessin_d%27enfant
- http://www.scholarpedia.org/
- http://eom.springer.de
- http://www.proofwiki.org/wiki/
- Princeton companion to mathematics(Companion_to_Mathematics.pdf)
books
expositions
articles
- http://www.ams.org/mathscinet
- http://www.zentralblatt-math.org/zmath/en/
- http://arxiv.org/
- http://www.pdf-search.org/
- http://pythagoras0.springnote.com/
- http://math.berkeley.edu/~reb/papers/index.html
- http://dx.doi.org/
question and answers(Math Overflow)
- http://mathoverflow.net/search?q=
- http://math.stackexchange.com/search?q=
- http://physics.stackexchange.com/search?q=
blogs
- 구글 블로그 검색
- http://ncatlab.org/nlab/show/HomePage
experts on the field