"Belyi map"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
19번째 줄: 19번째 줄:
 
<h5>Grobner techniques</h5>
 
<h5>Grobner techniques</h5>
  
*  
+
* start with three permutations (12), (23), (132). They generate S_3.
 +
* Riemann-Hurwitz formula gives the genus g=1-3+(1+1+2)/2=0
  
 
 
 
 
27번째 줄: 28번째 줄:
 
<h5>complex analytic method</h5>
 
<h5>complex analytic method</h5>
  
 
+
* using modular forms
  
 
 
 
 
128번째 줄: 129번째 줄:
 
<h5>experts on the field</h5>
 
<h5>experts on the field</h5>
  
 +
* [http://www.cems.uvm.edu/%7Evoight/ http://www.cems.uvm.edu/~voight/]
 
* http://arxiv.org/
 
* http://arxiv.org/
  

2012년 3월 8일 (목) 08:59 판

introduction
  • Belyi's theorem on algebraic curves
    • any non-singular algebraic curve C, defined by algebraic number coefficients, represents a compact Riemann surface which is a ramified covering of the Riemann sphere, ramified at three points only.
  • Belyi map gives rise to a projective curve

 

 

Belyi maps of degree 2
  • Belyi map f:\mathbb{P}^1\to \mathbb{P}^1 defined by z\mapsto z^2

 

 

Grobner techniques
  • start with three permutations (12), (23), (132). They generate S_3.
  • Riemann-Hurwitz formula gives the genus g=1-3+(1+1+2)/2=0

 

 

complex analytic method
  • using modular forms

 

 

p-adic method

 

 

 

 

history

 

 

related items

 

 

encyclopedia

 

 

books

 

 

 

expositions

 

 

articles

 

 

 

question and answers(Math Overflow)

 

 

 

blogs

 

 

experts on the field

 

 

links