"Belyi map"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
imported>Pythagoras0
잔글 (찾아 바꾸기 – “<h5 (.*)">” 문자열을 “==” 문자열로)
58번째 줄: 58번째 줄:
 
 
 
 
  
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">encyclopedia==
+
==encyclopedia==
  
 
* http://en.wikipedia.org/wiki/Dessin_d%27enfant
 
* http://en.wikipedia.org/wiki/Dessin_d%27enfant
88번째 줄: 88번째 줄:
 
 
 
 
  
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">articles==
+
==articles==
  
 
 
 
 

2012년 10월 28일 (일) 17:06 판

introduction

  • Belyi's theorem on algebraic curves
    • any non-singular algebraic curve C, defined by algebraic number coefficients, represents a compact Riemann surface which is a ramified covering of the Riemann sphere, ramified at three points only.
  • Belyi map gives rise to a projective curve

 

 

Belyi maps of degree 2

  • Belyi map f:\mathbb{P}^1\to \mathbb{P}^1 defined by z\mapsto z^2

 

 

Grobner techniques

  • start with three permutations (12), (23), (132). They generate S_3.
  • Riemann-Hurwitz formula gives the genus g=1-3+(1+1+2)/2=0

 

 

complex analytic method

  • using modular forms

 

 

p-adic method

 

 

 

 

history

 

 

related items

 

 

encyclopedia

 

 

books

 

 

 

expositions

 

 

articles

 

 

 

question and answers(Math Overflow)

 

 

 

blogs

 

 

experts on the field

 

 

links