"Belyi map"의 두 판 사이의 차이
		
		
		
		
		
		둘러보기로 가기
		검색하러 가기
		
				
		
		
	
imported>Pythagoras0 잔글 (찾아 바꾸기 – “<h5 (.*)">” 문자열을 “==” 문자열로)  | 
				imported>Pythagoras0   | 
				||
| 141번째 줄: | 141번째 줄: | ||
* [http://pythagoras0.springnote.com/pages/1947378 수식표현 안내]  | * [http://pythagoras0.springnote.com/pages/1947378 수식표현 안내]  | ||
[[분류:개인노트]][[분류:개인노트]]  | [[분류:개인노트]][[분류:개인노트]]  | ||
| + | [[분류:math and physics]]  | ||
2012년 10월 29일 (월) 09:53 판
introduction
- Belyi's theorem on algebraic curves
- any non-singular algebraic curve C, defined by algebraic number coefficients, represents a compact Riemann surface which is a ramified covering of the Riemann sphere, ramified at three points only.
 
 - Belyi map gives rise to a projective curve
 
Belyi maps of degree 2
- Belyi map f:\mathbb{P}^1\to \mathbb{P}^1 defined by z\mapsto z^2
 
Grobner techniques
- start with three permutations (12), (23), (132). They generate S_3.
 - Riemann-Hurwitz formula gives the genus g=1-3+(1+1+2)/2=0
 
complex analytic method
- using modular forms
 
p-adic method
history
encyclopedia
- http://en.wikipedia.org/wiki/Dessin_d%27enfant
 - http://www.scholarpedia.org/
 - http://eom.springer.de
 - http://www.proofwiki.org/wiki/
 - Princeton companion to mathematics(Companion_to_Mathematics.pdf)
 
books
expositions
articles
- http://www.ams.org/mathscinet
 - http://www.zentralblatt-math.org/zmath/en/
 - http://arxiv.org/
 - http://www.pdf-search.org/
 - http://pythagoras0.springnote.com/
 - http://math.berkeley.edu/~reb/papers/index.html
 - http://dx.doi.org/
 
question and answers(Math Overflow)
- http://mathoverflow.net/search?q=
 - http://math.stackexchange.com/search?q=
 - http://physics.stackexchange.com/search?q=
 
blogs
- 구글 블로그 검색
 - http://ncatlab.org/nlab/show/HomePage
 
experts on the field