"Belyi map"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
imported>Pythagoras0 |
imported>Pythagoras0 |
||
2번째 줄: | 2번째 줄: | ||
* Belyi's theorem on algebraic curves<br> | * Belyi's theorem on algebraic curves<br> | ||
− | ** any non-singular algebraic curve C, defined by algebraic number coefficients, represents a compact Riemann surface which is a ramified covering of the Riemann sphere, ramified at three points only. | + | ** any non-singular algebraic curve C, defined by algebraic number coefficients, represents a compact Riemann surface which is a ramified covering of the Riemann sphere, ramified at three points $\{0,1,\infty\}$ only. |
* Belyi map gives rise to a projective curve | * Belyi map gives rise to a projective curve | ||
38번째 줄: | 38번째 줄: | ||
− | |||
− | |||
53번째 줄: | 51번째 줄: | ||
==related items== | ==related items== | ||
− | + | * [[Dessin d'enfant]] | |
− | |||
− | |||
61번째 줄: | 57번째 줄: | ||
* http://en.wikipedia.org/wiki/Dessin_d%27enfant | * http://en.wikipedia.org/wiki/Dessin_d%27enfant | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
[[분류:개인노트]] | [[분류:개인노트]] | ||
− | |||
[[분류:math and physics]] | [[분류:math and physics]] | ||
[[분류:math]] | [[분류:math]] |
2013년 12월 3일 (화) 05:12 판
introduction
- Belyi's theorem on algebraic curves
- any non-singular algebraic curve C, defined by algebraic number coefficients, represents a compact Riemann surface which is a ramified covering of the Riemann sphere, ramified at three points $\{0,1,\infty\}$ only.
- Belyi map gives rise to a projective curve
Belyi maps of degree 2
- Belyi map f:\mathbb{P}^1\to \mathbb{P}^1 defined by z\mapsto z^2
Grobner techniques
- start with three permutations (12), (23), (132). They generate S_3.
- Riemann-Hurwitz formula gives the genus g=1-3+(1+1+2)/2=0
complex analytic method
- using modular forms
p-adic method
history
encyclopedia