"Belyi map"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
imported>Pythagoras0
2번째 줄: 2번째 줄:
  
 
*  Belyi's theorem on algebraic curves<br>
 
*  Belyi's theorem on algebraic curves<br>
** any non-singular algebraic curve C, defined by algebraic number coefficients, represents a compact Riemann surface which is a ramified covering of the Riemann sphere, ramified at three points only.
+
** any non-singular algebraic curve C, defined by algebraic number coefficients, represents a compact Riemann surface which is a ramified covering of the Riemann sphere, ramified at three points $\{0,1,\infty\}$ only.
 
* Belyi map gives rise to a projective curve
 
* Belyi map gives rise to a projective curve
  
38번째 줄: 38번째 줄:
 
 
 
 
  
 
 
  
 
 
  
 
 
 
 
53번째 줄: 51번째 줄:
  
 
==related items==
 
==related items==
 
+
* [[Dessin d'enfant]]
 
 
 
 
 
 
 
 
  
61번째 줄: 57번째 줄:
  
 
* http://en.wikipedia.org/wiki/Dessin_d%27enfant
 
* http://en.wikipedia.org/wiki/Dessin_d%27enfant
* http://www.scholarpedia.org/
 
* [http://eom.springer.de/ http://eom.springer.de]
 
* http://www.proofwiki.org/wiki/
 
* Princeton companion to mathematics([[2910610/attachments/2250873|Companion_to_Mathematics.pdf]])
 
 
 
 
 
 
 
 
==books==
 
 
 
 
 
* [[2011년 books and articles]]
 
* http://library.nu/search?q=
 
* http://library.nu/search?q=
 
 
 
 
 
 
 
 
==expositions==
 
 
 
 
 
 
 
 
==articles==
 
 
 
 
 
* http://www.ams.org/mathscinet
 
* http://www.zentralblatt-math.org/zmath/en/
 
* http://arxiv.org/
 
* http://www.pdf-search.org/
 
* http://pythagoras0.springnote.com/
 
* [http://math.berkeley.edu/%7Ereb/papers/index.html http://math.berkeley.edu/~reb/papers/index.html]
 
* http://dx.doi.org/
 
 
 
 
 
 
 
 
==question and answers(Math Overflow)==
 
 
* http://mathoverflow.net/search?q=
 
* http://math.stackexchange.com/search?q=
 
* http://physics.stackexchange.com/search?q=
 
 
 
 
 
 
 
 
 
 
 
==blogs==
 
 
*  구글 블로그 검색<br>
 
**  http://blogsearch.google.com/blogsearch?q=<br>
 
** http://blogsearch.google.com/blogsearch?q=
 
* http://ncatlab.org/nlab/show/HomePage
 
 
 
 
 
 
 
 
==experts on the field==
 
 
* [http://www.cems.uvm.edu/%7Evoight/ http://www.cems.uvm.edu/~voight/]
 
* http://arxiv.org/
 
 
 
 
  
 
 
 
 
  
==links==
 
  
* [http://detexify.kirelabs.org/classify.html Detexify2 - LaTeX symbol classifier]
 
* [http://pythagoras0.springnote.com/pages/1947378 수식표현 안내]
 
 
[[분류:개인노트]]
 
[[분류:개인노트]]
[[분류:math and physics]]
 
 
[[분류:math and physics]]
 
[[분류:math and physics]]
 
[[분류:math]]
 
[[분류:math]]

2013년 12월 3일 (화) 05:12 판

introduction

  • Belyi's theorem on algebraic curves
    • any non-singular algebraic curve C, defined by algebraic number coefficients, represents a compact Riemann surface which is a ramified covering of the Riemann sphere, ramified at three points $\{0,1,\infty\}$ only.
  • Belyi map gives rise to a projective curve

 

 

Belyi maps of degree 2

  • Belyi map f:\mathbb{P}^1\to \mathbb{P}^1 defined by z\mapsto z^2

 

 

Grobner techniques

  • start with three permutations (12), (23), (132). They generate S_3.
  • Riemann-Hurwitz formula gives the genus g=1-3+(1+1+2)/2=0

 

 

complex analytic method

  • using modular forms

 

 

p-adic method

 


 

history

 

 

related items

 

encyclopedia