"Belyi map"의 두 판 사이의 차이
		
		
		
		
		
		둘러보기로 가기
		검색하러 가기
		
				
		
		
	
imported>Pythagoras0  | 
				imported>Pythagoras0   | 
				||
| 11번째 줄: | 11번째 줄: | ||
==Belyi maps of degree 2==  | ==Belyi maps of degree 2==  | ||
| − | * Belyi map f:\mathbb{P}^1\to \mathbb{P}^1 defined by z\mapsto z^2  | + | * Belyi map $f:\mathbb{P}^1\to \mathbb{P}^1$ defined by $z\mapsto z^2$  | 
| 19번째 줄: | 19번째 줄: | ||
==Grobner techniques==  | ==Grobner techniques==  | ||
| − | * start with three permutations (12), (23), (132). They generate S_3.  | + | * start with three permutations $(12), (23), (132)$. They generate $S_3$.  | 
| − | * Riemann-Hurwitz formula gives the genus g=1-3+(1+1+2)/2=0  | + | * Riemann-Hurwitz formula gives the genus $g=1-3+(1+1+2)/2=0$  | 
2013년 12월 3일 (화) 04:13 판
introduction
- Belyi's theorem on algebraic curves
- any non-singular algebraic curve C, defined by algebraic number coefficients, represents a compact Riemann surface which is a ramified covering of the Riemann sphere, ramified at three points $\{0,1,\infty\}$ only.
 
 - Belyi map gives rise to a projective curve
 
Belyi maps of degree 2
- Belyi map $f:\mathbb{P}^1\to \mathbb{P}^1$ defined by $z\mapsto z^2$
 
Grobner techniques
- start with three permutations $(12), (23), (132)$. They generate $S_3$.
 - Riemann-Hurwitz formula gives the genus $g=1-3+(1+1+2)/2=0$
 
complex analytic method
- using modular forms
 
p-adic method
history
encyclopedia