"Belyi map"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
imported>Pythagoras0 |
imported>Pythagoras0 |
||
53번째 줄: | 53번째 줄: | ||
* [[Dessin d'enfant]] | * [[Dessin d'enfant]] | ||
+ | |||
+ | ==expositions== | ||
+ | * Magot, Nicolas, and Alexander Zvonkin. 2000. “Belyi Functions for Archimedean Solids.” Discrete Mathematics 217 (1–3) (April 28): 249–271. doi:10.1016/S0012-365X(99)00266-6. | ||
+ | |||
==encyclopedia== | ==encyclopedia== |
2013년 12월 7일 (토) 14:07 판
introduction
- Belyi's theorem on algebraic curves
- any non-singular algebraic curve C, defined by algebraic number coefficients, represents a compact Riemann surface which is a ramified covering of the Riemann sphere, ramified at three points $\{0,1,\infty\}$ only.
- Belyi map gives rise to a projective curve
Belyi maps of degree 2
- Belyi map $f:\mathbb{P}^1\to \mathbb{P}^1$ defined by $z\mapsto z^2$
Grobner techniques
- start with three permutations $(12), (23), (132)$. They generate $S_3$.
- Riemann-Hurwitz formula gives the genus $g=1-3+(1+1+2)/2=0$
complex analytic method
- using modular forms
p-adic method
history
expositions
- Magot, Nicolas, and Alexander Zvonkin. 2000. “Belyi Functions for Archimedean Solids.” Discrete Mathematics 217 (1–3) (April 28): 249–271. doi:10.1016/S0012-365X(99)00266-6.
encyclopedia