"Slater 92"의 두 판 사이의 차이
		
		
		
		
		
		둘러보기로 가기
		검색하러 가기
		
				
		
		
	
 (피타고라스님이 이 페이지를 개설하였습니다.)  | 
				|||
| 1번째 줄: | 1번째 줄: | ||
| + | <h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">type of identity and specialization</h5>  | ||
| + | * [[Slater list|Slater's list]]  | ||
| + | |||
| + | |||
| + | |||
| + | |||
| + | |||
| + | <h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">q-series identity</h5>  | ||
| + | |||
| + | |||
| + | |||
| + | <math>\sum_{n=0}^{\infty}\frac{(q^3;q^3)_{n}q^{n(n+1)}}{ (q)_{n}(q;q^{2})_n(q^2;q^2)_{n}}=\frac{(q^{9};q^{27})_{\infty}(q^{18};q^{27})_{\infty}(q^{27};q^{27})_{\infty}}{(q)_{\infty}}</math>  | ||
| + | |||
| + | |||
| + | |||
| + | * [http://www.research.att.com/~njas/sequences/index.html The On-Line Encyclopedia of Integer Sequences]<br>  | ||
| + | ** http://www.research.att.com/~njas/sequences/?q=  | ||
| + | |||
| + | |||
| + | |||
| + | |||
| + | |||
| + | |||
| + | |||
| + | |||
| + | |||
| + | <h5 style="line-height: 2em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">Bethe type equation (cyclotomic equation)</h5>  | ||
| + | |||
| + | |||
| + | |||
| + | <math>\frac{(1-x)(1-x^2)^2}{(1-x^3)}=x^2</math>   | ||
| + | |||
| + | <math>x^3+3x^2-1=0</math>  | ||
| + | |||
| + | |||
| + | |||
| + | <math>x, -y, -z^{-1}</math>가 방정식 의 해  | ||
| + | |||
| + | |||
| + | |||
| + | |||
| + | |||
| + | <h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">dilogarithm identity</h5>  | ||
| + | |||
| + | <math>L(x^3)-3L(x^2)-3L(x)=-\frac{7}{3}L(1)</math>  | ||
| + | |||
| + | |||
| + | |||
| + | |||
| + | |||
| + | <h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">related items</h5>  | ||
| + | |||
| + | |||
| + | |||
| + | |||
| + | |||
| + | |||
| + | |||
| + | <h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">books</h5>  | ||
| + | |||
| + | |||
| + | |||
| + | * [[2010년 books and articles]]<br>  | ||
| + | * http://gigapedia.info/1/  | ||
| + | * http://gigapedia.info/1/  | ||
| + | * http://www.amazon.com/s/ref=nb_ss_gw?url=search-alias%3Dstripbooks&field-keywords=  | ||
| + | |||
| + | [[4909919|]]  | ||
| + | |||
| + | |||
| + | |||
| + | |||
| + | |||
| + | <h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">articles</h5>  | ||
| + | |||
| + | |||
| + | |||
| + | * http://www.ams.org/mathscinet  | ||
| + | * [http://www.zentralblatt-math.org/zmath/en/ ]http://www.zentralblatt-math.org/zmath/en/  | ||
| + | * [http://arxiv.org/ ]http://arxiv.org/  | ||
| + | * http://pythagoras0.springnote.com/  | ||
| + | * http://math.berkeley.edu/~reb/papers/index.html  | ||
| + | * http://dx.doi.org/  | ||
| + | *  | ||
2010년 6월 21일 (월) 15:35 판
type of identity and specialization
q-series identity
\(\sum_{n=0}^{\infty}\frac{(q^3;q^3)_{n}q^{n(n+1)}}{ (q)_{n}(q;q^{2})_n(q^2;q^2)_{n}}=\frac{(q^{9};q^{27})_{\infty}(q^{18};q^{27})_{\infty}(q^{27};q^{27})_{\infty}}{(q)_{\infty}}\)
Bethe type equation (cyclotomic equation)
\(\frac{(1-x)(1-x^2)^2}{(1-x^3)}=x^2\)
\(x^3+3x^2-1=0\)
\(x, -y, -z^{-1}\)가 방정식 의 해
dilogarithm identity
\(L(x^3)-3L(x^2)-3L(x)=-\frac{7}{3}L(1)\)
books
- 2010년 books and articles
 - http://gigapedia.info/1/
 - http://gigapedia.info/1/
 - http://www.amazon.com/s/ref=nb_ss_gw?url=search-alias%3Dstripbooks&field-keywords=
 
[[4909919|]]
articles