"Differential Galois theory"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
50번째 줄: | 50번째 줄: | ||
* For<math>K_{i}=K_{i-1}(e_i)</math> , one of the following condition holds<br> | * For<math>K_{i}=K_{i-1}(e_i)</math> , one of the following condition holds<br> | ||
** <math>e_i'\in K_{i-1}</math><br> | ** <math>e_i'\in K_{i-1}</math><br> | ||
− | ** <math>e_{i}'/e_{i}\in K_{i-1}</math> i.e. <br> | + | ** <math>e_{i}'/e_{i}\in K_{i-1}</math> i.e. <math>(\log e_i)' \in K_{i-1}</math><br> |
** <math>e_{i}</math> is algebraic over <math>K_{i-1}</math><br> | ** <math>e_{i}</math> is algebraic over <math>K_{i-1}</math><br> | ||
+ | * <br> | ||
109번째 줄: | 110번째 줄: | ||
* [[Class Field Theory]]<br> | * [[Class Field Theory]]<br> | ||
* [[number fields and threefolds]]<br> | * [[number fields and threefolds]]<br> | ||
+ | * [http://pythagoras0.springnote.com/pages/6233973 Fuchsian 미분방정식(Fuchsian differential equation)]<br> | ||
132번째 줄: | 134번째 줄: | ||
* [http://www.jstor.org/stable/2154053 Liouvillian First Integrals of Differential Equations]<br> | * [http://www.jstor.org/stable/2154053 Liouvillian First Integrals of Differential Equations]<br> | ||
** Michael F. Singer, Transactions of the American Mathematical Society, Vol. 333, No. 2 (Oct., 1992), pp. 673-688 | ** Michael F. Singer, Transactions of the American Mathematical Society, Vol. 333, No. 2 (Oct., 1992), pp. 673-688 | ||
+ | * [http://dx.doi.org/10.1007/3-540-15984-3_335 Elementary and Liouvillian solutions of linear differential equations]<br> | ||
+ | ** M. F. Singer and J. H. Davenport, 1985 | ||
2010년 8월 13일 (금) 15:51 판
- differential galois theory
- Liouville
historical origin
- integration in finite terms
- quadrature of second order differential equation (Fuchsian differential equation)
differential field
solvable by quadratures
- basic functions : basic elementary functions
- allowed operatrions : compositions, arithmetic operations, differentiation, integration
- examples
- an elliptic integral is representable by quadrature
elementary extension
- using exponential and logarithm
- elementary element
Liouville extension
- we can adjoin integrals and exponentials of integrals + algbraic extension
- an element is said to be representable by a generalized quadrature
- For\(K_{i}=K_{i-1}(e_i)\) , one of the following condition holds
- \(e_i'\in K_{i-1}\)
- \(e_{i}'/e_{i}\in K_{i-1}\) i.e. \((\log e_i)' \in K_{i-1}\)
- \(e_{i}\) is algebraic over \(K_{i-1}\)
- \(e_i'\in K_{i-1}\)
-
Picard-Vessiot extension
- framework for linear differential equation
- made by including solutions of DE to the base field (e.g. rational function field)
- this corresponds to the concept of the splitting fields(or Galois extensions)
- we can define a Galois group for a linear differential equation.
- examples
- algebraic extension
- adjoining an integral
- adjoining the exponential of an integral
theorem
If a Picard-Vessiot extension is a Liouville extension, then the Galois group of this extension is solvable.
Fuchsian differential equation
- differential equation with regular singularities
- indicial equation
\(x(x-1)+px+q=0\)
theorem
A Fuchsian linear differential equation is solvable by quadratures if and only if the monodromy group of this equation is solvable.
solution by quadrature
- Differential Galois Theory and Non-Integrability of Hamiltonian Systems
- Integrability and non-integrability in Hamiltonian mechanics
- [1]http://www.caminos.upm.es/matematicas/morales%20ruiz/libroFSB.pdf
- http://andromeda.rutgers.edu/~liguo/DARTIII/Presentations/Khovanskii.pdf
- http://www.math.purdue.edu/~agabriel/topological_galois.pdf
encyclopedia
- http://ko.wikipedia.org/wiki/
- http://en.wikipedia.org/wiki/Differential_Galois_theory
- http://en.wikipedia.org/wiki/Homotopy_lifting_property
- http://en.wikipedia.org/wiki/covering_space
- http://en.wikipedia.org/wiki/Field_extension
articles
- Liouvillian First Integrals of Differential Equations
- Michael F. Singer, Transactions of the American Mathematical Society, Vol. 333, No. 2 (Oct., 1992), pp. 673-688
- Elementary and Liouvillian solutions of linear differential equations
- M. F. Singer and J. H. Davenport, 1985
books
- Group Theory and Differential Equations
- Lawrence Markus, 1960
- An introduction to differential algebra
- Irving Kaplansky
- Irving Kaplansky
- algebraic theory of differential equations
- http://gigapedia.info/1/galois_theory
- http://gigapedia.info/1/differential+galois+theory
- http://gigapedia.info/1/Kolchin
- http://gigapedia.info/1/ritt
- http://gigapedia.info/1/Galois'+dream
- http://gigapedia.info/1/differntial+algebra