"Differential Galois theory"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
37번째 줄: | 37번째 줄: | ||
<h5>elementary extension</h5> | <h5>elementary extension</h5> | ||
− | * | + | * to takitaking exponentials and logarithms |
* elementary element | * elementary element | ||
46번째 줄: | 46번째 줄: | ||
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">Liouville extension</h5> | <h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">Liouville extension</h5> | ||
− | * we can adjoin<br> | + | * an element is said to be representable by a generalized quadrature |
+ | * we can capture these properties using the concept of Liouville extension | ||
+ | * to get a Liouville extension, we can adjoin<br> | ||
** integrals | ** integrals | ||
** exponentials of integrals | ** exponentials of integrals | ||
− | ** algebraic extension (generalized Liouville extension) | + | ** algebraic extension (generalized Liouville extension)<br> |
− | * | + | *** from these we can include the following operations<br> |
+ | **** exponential | ||
+ | **** logarithm | ||
* For<math>K_{i}=K_{i-1}(e_i)</math> , one of the following condition holds<br> | * For<math>K_{i}=K_{i-1}(e_i)</math> , one of the following condition holds<br> | ||
** <math>e_i'\in K_{i-1}</math>, i.e. <math>e_i=\int e_i'\in K_i</math><br> | ** <math>e_i'\in K_{i-1}</math>, i.e. <math>e_i=\int e_i'\in K_i</math><br> | ||
58번째 줄: | 62번째 줄: | ||
** Let <math>a,a'\in F</math>. Is <math>b=e^a\in K</math> where K is a Liouville extension?<br> | ** Let <math>a,a'\in F</math>. Is <math>b=e^a\in K</math> where K is a Liouville extension?<br> | ||
** <math>b'=a' e^a=a'b</math> implies <math>a'=\frac{b'}{b}\in F</math>.<br> | ** <math>b'=a' e^a=a'b</math> implies <math>a'=\frac{b'}{b}\in F</math>.<br> | ||
− | ** | + | ** the exponential of the integral of a' i.e. <math>e^{\int a'}=e^a+c</math> must be in the Liouville extension. So <math>b=e^a\in K</math>.<br> |
+ | * remark on logarithm<br> | ||
+ | ** <math>b=\log a</math> is the integral of <math>a'/a\in F</math>. So <math>b\in K</math><br> | ||
+ | |||
* a few result<br> | * a few result<br> | ||
** K/F is a Liouville extension iff the differential Galois group K over F is solvable.<br> | ** K/F is a Liouville extension iff the differential Galois group K over F is solvable.<br> |
2012년 8월 20일 (월) 22:55 판
- differential galois theory
- Liouville
historical origin
- integration in finite terms
- quadrature of second order differential equation (Fuchsian differential equation)
differential field
solvable by quadratures
- basic functions : basic elementary functions
- allowed operatrions : compositions, arithmetic operations, differentiation, integration
- examples
- an elliptic integral is representable by quadrature
elementary extension
- to takitaking exponentials and logarithms
- elementary element
Liouville extension
- an element is said to be representable by a generalized quadrature
- we can capture these properties using the concept of Liouville extension
- to get a Liouville extension, we can adjoin
- integrals
- exponentials of integrals
- algebraic extension (generalized Liouville extension)
- from these we can include the following operations
- exponential
- logarithm
- from these we can include the following operations
- For\(K_{i}=K_{i-1}(e_i)\) , one of the following condition holds
- \(e_i'\in K_{i-1}\), i.e. \(e_i=\int e_i'\in K_i\)
- \(e_{i}'/e_{i}\in K_{i-1}\) i.e. \((\log e_i)' \in K_{i-1}\)
- \(e_{i}\) is algebraic over \(K_{i-1}\)
- \(e_i'\in K_{i-1}\), i.e. \(e_i=\int e_i'\in K_i\)
- remark on exponentiation
- Let \(a,a'\in F\). Is \(b=e^a\in K\) where K is a Liouville extension?
- \(b'=a' e^a=a'b\) implies \(a'=\frac{b'}{b}\in F\).
- the exponential of the integral of a' i.e. \(e^{\int a'}=e^a+c\) must be in the Liouville extension. So \(b=e^a\in K\).
- Let \(a,a'\in F\). Is \(b=e^a\in K\) where K is a Liouville extension?
- remark on logarithm
- \(b=\log a\) is the integral of \(a'/a\in F\). So \(b\in K\)
- \(b=\log a\) is the integral of \(a'/a\in F\). So \(b\in K\)
- a few result
- K/F is a Liouville extension iff the differential Galois group K over F is solvable.
- K/F is a generalized Liouville extension iff the differential Galois group K over F has the solvable component of the identity
- K/F is a Liouville extension iff the differential Galois group K over F is solvable.
Picard-Vessiot extension
- framework for linear differential equation
- made by including solutions of DE to the base field (e.g. rational function field)
- this corresponds to the concept of the splitting fields(or Galois extensions)
- we can define a Galois group for a linear differential equation.
- examples
- algebraic extension
- adjoining an integral
- adjoining the exponential of an integral
theorem
If a Picard-Vessiot extension is a Liouville extension, then the Galois group of this extension is solvable.
Fuchsian differential equation
- differential equation with regular singularities
- indicial equation
\(x(x-1)+px+q=0\)
theorem
A Fuchsian linear differential equation is solvable by quadratures if and only if the monodromy group of this equation is solvable.
solution by quadrature
- Differential Galois Theory and Non-Integrability of Hamiltonian Systems
- Integrability and non-integrability in Hamiltonian mechanics
- [1]http://www.caminos.upm.es/matematicas/morales%20ruiz/libroFSB.pdf
- http://andromeda.rutgers.edu/~liguo/DARTIII/Presentations/Khovanskii.pdf
- http://www.math.purdue.edu/~agabriel/topological_galois.pdf
encyclopedia
- http://ko.wikipedia.org/wiki/
- http://en.wikipedia.org/wiki/Differential_Galois_theory
- http://en.wikipedia.org/wiki/Homotopy_lifting_property
- http://en.wikipedia.org/wiki/covering_space
- http://en.wikipedia.org/wiki/Field_extension
articles
- Liouvillian First Integrals of Differential Equations
- Michael F. Singer, Transactions of the American Mathematical Society, Vol. 333, No. 2 (Oct., 1992), pp. 673-688
- Elementary and Liouvillian solutions of linear differential equations
- M. F. Singer and J. H. Davenport, 1985
books
- Group Theory and Differential Equations
- Lawrence Markus, 1960
- An introduction to differential algebra
- Irving Kaplansky
- Irving Kaplansky
- algebraic theory of differential equations
- http://gigapedia.info/1/galois_theory
- http://gigapedia.info/1/differential+galois+theory
- http://gigapedia.info/1/Kolchin
- http://gigapedia.info/1/ritt
- http://gigapedia.info/1/Galois'+dream
- http://gigapedia.info/1/differntial+algebra