"T-duality"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
imported>Pythagoras0 잔글 (찾아 바꾸기 – “* Princeton companion to mathematics(Companion_to_Mathematics.pdf)” 문자열을 “” 문자열로) |
imported>Pythagoras0 |
||
1번째 줄: | 1번째 줄: | ||
==introduction== | ==introduction== | ||
− | * This refers to the situation where one string theory compactified on a circle of radius R, and another string theory compactified on circle of radius 1/R describe the same physics. Therefore when one of the theories is on a very small circle the other theory is on a very large circle. | + | * This refers to the situation where one string theory compactified on a circle of radius R, and another string theory compactified on circle of radius 1/R describe the same physics. Therefore when one of the theories is on a very small circle the other theory is on a very large circle. |
* <math>\int \partial X \bar{\partial}X</math> | * <math>\int \partial X \bar{\partial}X</math> | ||
* <math>X=X+2\pi R</math> | * <math>X=X+2\pi R</math> | ||
− | * | + | * T-duality |
+ | :<math>\tilde{R}=\frac{\alpha'}{R}</math> | ||
− | |||
13번째 줄: | 13번째 줄: | ||
http://www.sciencedirect.com/science/article/pii/0370269389910605 | http://www.sciencedirect.com/science/article/pii/0370269389910605 | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
35번째 줄: | 25번째 줄: | ||
* http://en.wikipedia.org/wiki/T-duality | * http://en.wikipedia.org/wiki/T-duality | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
[[분류:개인노트]] | [[분류:개인노트]] | ||
[[분류:thesis]] | [[분류:thesis]] |
2013년 12월 22일 (일) 04:19 판
introduction
- This refers to the situation where one string theory compactified on a circle of radius R, and another string theory compactified on circle of radius 1/R describe the same physics. Therefore when one of the theories is on a very small circle the other theory is on a very large circle.
- \(\int \partial X \bar{\partial}X\)
- \(X=X+2\pi R\)
- T-duality
\[\tilde{R}=\frac{\alpha'}{R}\]
http://iopscience.iop.org/1742-5468/2006/12/P12016/fulltext#SECTIONREF
http://www.sciencedirect.com/science/article/pii/0370269389910605