"Self-avoiding walks (SAW)"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
imported>Pythagoras0 |
imported>Pythagoras0 |
||
23번째 줄: | 23번째 줄: | ||
− | |||
− | |||
− | + | ==expositions== | |
+ | * Slade, Gordon. “Self-Avoiding Walks.” The Mathematical Intelligencer 16, no. 1 (December 1, 1994): 29–35. doi:10.1007/BF03026612. | ||
+ | |||
37번째 줄: | 37번째 줄: | ||
==encyclopedia== | ==encyclopedia== | ||
* http://en.wikipedia.org/wiki/Connective_constant | * http://en.wikipedia.org/wiki/Connective_constant | ||
+ | * http://en.wikipedia.org/wiki/Self-avoiding_walk | ||
2015년 1월 22일 (목) 06:29 판
introduction
- choose edge in a given lattice
- not allowed to retrace your path
- how many SAWs of length $n$ are there?
- conjecture
Let $c_n$ be the number of SAWs from a fixed starting point on the honeycomb lattice. Then $$ c_n \sim An^{\gamma-1}\mu^n $$ as $n\to \infty$, where $\mu=\sqrt{2+\sqrt{2}}$ and $\gamma$ is conjectured to be $43/32$
- the fact $\mu=\sqrt{2+\sqrt{2}}$ was conjectured by Nieuhuis in 1982 and proved in 2012 by Smirnov
- the critical exponent $\gamma$ is universal
- proof uses discrete holomorphic observables
computational resource
expositions
- Slade, Gordon. “Self-Avoiding Walks.” The Mathematical Intelligencer 16, no. 1 (December 1, 1994): 29–35. doi:10.1007/BF03026612.
articles
- Duminil-Copin, Hugo, and Stanislav Smirnov. “The Connective Constant of the Honeycomb Lattice Equals $\sqrt{2+\sqrt2}$.” arXiv:1007.0575 [math-Ph], July 4, 2010. http://arxiv.org/abs/1007.0575.
- Lawler, Gregory F., Oded Schramm, and Wendelin Werner. “On the Scaling Limit of Planar Self-Avoiding Walk.” arXiv:math/0204277, April 23, 2002. http://arxiv.org/abs/math/0204277.