"Self-avoiding walks (SAW)"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
imported>Pythagoras0
7번째 줄: 7번째 줄:
 
==basics==
 
==basics==
 
;def
 
;def
A SAW of length $N$ is a map $W:\{0,1,\cdots, N\} \to \mathbb{Z}^d$ such that $|W(i+1)-W(i)|=1$ and $W(i)\neq W(j)$ for $i\neq j$
+
A SAW of length $n$ is a map $w:\{0,1,\cdots, n\} \to \mathbb{Z}^d$ such that $|w(i+1)-w(i)|=1$ and $w(i)\neq w(j)$ for $i\neq j$
* $C_N(x)=C_N$
+
* $W_n$ the set of all SAWs of length $n$
 +
* $C_n(x)=C_n(0,x)$ number of SAW starting at 0 and ending at x
 +
* $C_n=\sum_{x\in \mathbb{Z}^d}C_n(x)$ number of SAW
 +
* $R_e^2(w)=|w(n)-w(0)|^2$
 +
* $\langle R_e^2 \rangle=\frac{1}{C_n}\sum_{w\in W_n}R_e^2(w)$
 
;conjecture  
 
;conjecture  
Let $c_n$ be the number of SAWs from a fixed starting point on $\mathbb{Z}^d$. Then
+
We have the following conjecture
 
$$
 
$$
c_n \sim An^{\gamma-1}\mu^n
+
C_n \sim An^{\gamma-1}\mu^n \\
 +
C_n(x) \sim Bn^{\alpha-2}\mu^n \\
 +
\langle R_e^2 \rangle \sim Dn^{2\nu}
 
$$
 
$$
* we call
+
* universal constant
** $A$ amplitude
+
** $\alpha$ specific heat
** $\gamma$ : susceptibility
+
** $\gamma$ susceptibility
 
** $nu$ associated with correlation length
 
** $nu$ associated with correlation length
  

2015년 1월 22일 (목) 06:53 판

introduction

  • choose edge in a given lattice
  • not allowed to retrace your path
  • how many SAWs of length $n$ are there?


basics

def

A SAW of length $n$ is a map $w:\{0,1,\cdots, n\} \to \mathbb{Z}^d$ such that $|w(i+1)-w(i)|=1$ and $w(i)\neq w(j)$ for $i\neq j$

  • $W_n$ the set of all SAWs of length $n$
  • $C_n(x)=C_n(0,x)$ number of SAW starting at 0 and ending at x
  • $C_n=\sum_{x\in \mathbb{Z}^d}C_n(x)$ number of SAW
  • $R_e^2(w)=|w(n)-w(0)|^2$
  • $\langle R_e^2 \rangle=\frac{1}{C_n}\sum_{w\in W_n}R_e^2(w)$
conjecture

We have the following conjecture $$ C_n \sim An^{\gamma-1}\mu^n \\ C_n(x) \sim Bn^{\alpha-2}\mu^n \\ \langle R_e^2 \rangle \sim Dn^{2\nu} $$

  • universal constant
    • $\alpha$ specific heat
    • $\gamma$ susceptibility
    • $nu$ associated with correlation length


SAW on 2d honeycomb lattice

conjecture

Let $c_n$ be the number of SAWs from a fixed starting point on the honeycomb lattice. Then $$ c_n \sim An^{\gamma-1}\mu^n $$ as $n\to \infty$, where $\mu=\sqrt{2+\sqrt{2}}$ and $\gamma$ is conjectured to be $43/32$

  • the fact $\mu=\sqrt{2+\sqrt{2}}$ was conjectured by Nieuhuis in 1982 and proved in 2012 by Smirnov
  • the critical exponent $\gamma$ is universal 
  • proof uses discrete holomorphic observables

 

related items

 

computational resource

 


expositions

  • Slade, Gordon. “Self-Avoiding Walks.” The Mathematical Intelligencer 16, no. 1 (December 1, 1994): 29–35. doi:10.1007/BF03026612.

 

articles

  • Duminil-Copin, Hugo, and Stanislav Smirnov. “The Connective Constant of the Honeycomb Lattice Equals $\sqrt{2+\sqrt2}$.” arXiv:1007.0575 [math-Ph], July 4, 2010. http://arxiv.org/abs/1007.0575.
  • Lawler, Gregory F., Oded Schramm, and Wendelin Werner. “On the Scaling Limit of Planar Self-Avoiding Walk.” arXiv:math/0204277, April 23, 2002. http://arxiv.org/abs/math/0204277.


encyclopedia