"Zeta value at 2"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
2번째 줄: | 2번째 줄: | ||
* 복소이차수체의 [http://pythagoras0.springnote.com/pages/4533335 데데킨트 제타함수]<br><math>\zeta_{K}(2)=\frac{\pi^2}{6\sqrt{|d_K|}}\sum_{(a,d_k)=1} (\frac{d_K}{a})D(e^{2\pi ia/|d_k|})</math><br> | * 복소이차수체의 [http://pythagoras0.springnote.com/pages/4533335 데데킨트 제타함수]<br><math>\zeta_{K}(2)=\frac{\pi^2}{6\sqrt{|d_K|}}\sum_{(a,d_k)=1} (\frac{d_K}{a})D(e^{2\pi ia/|d_k|})</math><br> | ||
− | * Note that<br><math>\operatorname{Cl}_2(\theta)=-\int_0^{\theta} \ln |2\sin \frac{t}{2}| \,dt=\sum_{n=1}^{\infty}\frac{\sin (n\theta)}{n^2}</math><br> | + | * Note that<br> |
+ | ** the Clausen function and the Bloch-Wigner dilogarithms are same if <math>z=e^{i\theta}</math><br><math>\operatorname{Cl}_2(\theta)=-\int_0^{\theta} \ln |2\sin \frac{t}{2}| \,dt=\sum_{n=1}^{\infty}\frac{\sin (n\theta)}{n^2}</math><br><math>D(z)=\text{Im}(\operatorname{Li}_2(z))+\log|z|\arg(1-z)</math><br> | ||
25번째 줄: | 26번째 줄: | ||
+ | |||
+ | |||
+ | |||
+ | <h5 style="line-height: 2em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px;">figure eight knot complement</h5> | ||
+ | |||
+ | |||
+ | |||
+ | <math>V=\frac{9\sqrt{3}}{\pi^2}\zeta_{\mathbb{Q}(\sqrt{-3})}(2)=3D(e^{\frac{2i\pi}{3}})=2D(e^{\frac{i\pi}{3}})=2.029883212819\cdots</math> | ||
+ | |||
+ | <math>\zeta_{\mathbb{Q}(\sqrt{-3})}(2)=\frac{\pi^2}{3\sqrt{3}}D(e^{\frac{2\pi i}{3}})</math> | ||
+ | |||
+ | <math>L_{-3}(2)=\frac{2}{\sqrt{3}}D(e^{\frac{2\pi i}{3}})</math> | ||
* 2.02988321281930725<br><math>V(4_{1})=\frac{9\sqrt{3}}{\pi^2}\zeta_{\mathbb{Q}(\sqrt{-3})}(2)=3D(e^{\frac{2i\pi}{3}})=2D(e^{\frac{i\pi}{3}})=2.029883212819\cdots</math><br> where D is [http://pythagoras0.springnote.com/pages/4633853 Bloch-Wigner dilogarithm].<br> | * 2.02988321281930725<br><math>V(4_{1})=\frac{9\sqrt{3}}{\pi^2}\zeta_{\mathbb{Q}(\sqrt{-3})}(2)=3D(e^{\frac{2i\pi}{3}})=2D(e^{\frac{i\pi}{3}})=2.029883212819\cdots</math><br> where D is [http://pythagoras0.springnote.com/pages/4633853 Bloch-Wigner dilogarithm].<br> |
2010년 7월 31일 (토) 18:23 판
introduction
- 복소이차수체의 데데킨트 제타함수
\(\zeta_{K}(2)=\frac{\pi^2}{6\sqrt{|d_K|}}\sum_{(a,d_k)=1} (\frac{d_K}{a})D(e^{2\pi ia/|d_k|})\) - Note that
- the Clausen function and the Bloch-Wigner dilogarithms are same if \(z=e^{i\theta}\)
\(\operatorname{Cl}_2(\theta)=-\int_0^{\theta} \ln |2\sin \frac{t}{2}| \,dt=\sum_{n=1}^{\infty}\frac{\sin (n\theta)}{n^2}\)
\(D(z)=\text{Im}(\operatorname{Li}_2(z))+\log|z|\arg(1-z)\)
- the Clausen function and the Bloch-Wigner dilogarithms are same if \(z=e^{i\theta}\)
a few examples
\(\zeta_{\mathbb{Q}\sqrt{-1}}(2)=1.50670301\)
\(\zeta_{\mathbb{Q}\sqrt{-2}}(2)=1.75141751\cdots\)
\(\zeta_{\mathbb{Q}\sqrt{-3}}(2)=\frac{\pi^2}{6\sqrt{3}}(D(e^{2\pi i/3})-D(e^{4\pi i/3}))=\frac{\pi^2}{3\sqrt{3}}D(e^{2\pi i/3})=1.285190955484149\cdots\)
\(\zeta_{\mathbb{Q}\sqrt{-7}}(2)=\frac{\pi^2}{3\sqrt{7}}(D(e^{2\pi i/7})+D(e^{4\pi i/7})-D(e^{6\pi i/7}))=1.89484145\)
\(\zeta_{\mathbb{Q}\sqrt{-11}}(2)=1.49613186\)
- Cl[x_] := Im[PolyLog[2, Exp[I*x]]]
disc[n_] := NumberFieldDiscriminant[Sqrt[-n]]
L2[n_] :=
1/Sqrt[Abs[disc[n]]]*
Sum[JacobiSymbol[disc[n], k] Cl[2 Pi*k/Abs[disc[n]]], {k, 1,
Abs[disc[n]] - 1}]
Zeta2[n_] := L2[n]*Pi^2/6
Zeta2[1]
figure eight knot complement
\(V=\frac{9\sqrt{3}}{\pi^2}\zeta_{\mathbb{Q}(\sqrt{-3})}(2)=3D(e^{\frac{2i\pi}{3}})=2D(e^{\frac{i\pi}{3}})=2.029883212819\cdots\)
\(\zeta_{\mathbb{Q}(\sqrt{-3})}(2)=\frac{\pi^2}{3\sqrt{3}}D(e^{\frac{2\pi i}{3}})\)
\(L_{-3}(2)=\frac{2}{\sqrt{3}}D(e^{\frac{2\pi i}{3}})\)
- 2.02988321281930725
\(V(4_{1})=\frac{9\sqrt{3}}{\pi^2}\zeta_{\mathbb{Q}(\sqrt{-3})}(2)=3D(e^{\frac{2i\pi}{3}})=2D(e^{\frac{i\pi}{3}})=2.029883212819\cdots\)
where D is Bloch-Wigner dilogarithm. - what is \(\zeta_{\mathbb{Q}(\sqrt{-3})}(2)\)? numrically 1.285190955484149
history
- Dirichlet class number formula
- volume of hyperbolic threefolds and L-values
- Kashaev's volume Conjecture
- central charge of CFT, L-values and dilogarithm
- Gieseking's constant
encyclopedia
- http://ko.wikipedia.org/wiki/
- http://en.wikipedia.org/wiki/
- Princeton companion to mathematics(Companion_to_Mathematics.pdf)
books
- 2010년 books and articles
- http://gigapedia.info/1/
- http://gigapedia.info/1/
- http://www.amazon.com/s/ref=nb_ss_gw?url=search-alias%3Dstripbooks&field-keywords=
articles
- 논문정 리
- http://www.ams.org/mathscinet
- http://www.zentralblatt-math.org/zmath/en/
- http://pythagoras0.springnote.com/
- http://math.berkeley.edu/~reb/papers/index.html
- http://front.math.ucdavis.edu/search?a=&t=&c=&n=40&s=Listings&q=
- http://www.ams.org/mathscinet/search/publications.html?pg4=AUCN&s4=&co4=AND&pg5=TI&s5=&co5=AND&pg6=PC&s6=&co6=AND&pg7=ALLF&co7=AND&Submit=Search&dr=all&yrop=eq&arg3=&yearRangeFirst=&yearRangeSecond=&pg8=ET&s8=All&s7=
- http://dx.doi.org/
question and answers(Math Overflow)
blogs
experts on the field