"Fermionic characters of Virasoro minimal models"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
1번째 줄: | 1번째 줄: | ||
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">introduction</h5> | <h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">introduction</h5> | ||
− | + | * unitary<br> | |
+ | * n<br> | ||
50번째 줄: | 51번째 줄: | ||
* [http://dx.doi.org/10.1007/BF00400138 Continued fractions and fermionic representations for characters of M(p,p') minimal models]<br> | * [http://dx.doi.org/10.1007/BF00400138 Continued fractions and fermionic representations for characters of M(p,p') minimal models]<br> | ||
** A. Berkovich and B.M. McCoy, Letters in Mathematical Physics, 1996<br> | ** A. Berkovich and B.M. McCoy, Letters in Mathematical Physics, 1996<br> | ||
+ | * [http://arxiv.org/ct?url=http%3A%2F%2Fdx.doi.org%2F10%252E1142%2FS0217751X97001110&v=8ad52165 Virasoro character identities from the Andrews-Bailey construction]<br> | ||
+ | ** Foda, O. and Quano, Y-H. Preprint, hepth/9408086<br> | ||
* [http://arxiv.org/abs/hep-th/9403073 Fermionic counting of RSOS-states and Virasoro character formulas for the unitary minimal series M(ν, ν + 1). Exact results.]<br> | * [http://arxiv.org/abs/hep-th/9403073 Fermionic counting of RSOS-states and Virasoro character formulas for the unitary minimal series M(ν, ν + 1). Exact results.]<br> | ||
** A. Berkovich, Nuclear Phys. B 431 (1994), no. 1-2, 315--348, 1994<br> | ** A. Berkovich, Nuclear Phys. B 431 (1994), no. 1-2, 315--348, 1994<br> | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
* [http://dx.doi.org/10.1016/0370-2693(93)90194-M Fermionic Sum Representations for Conformal Field Theory Characters]<br> | * [http://dx.doi.org/10.1016/0370-2693(93)90194-M Fermionic Sum Representations for Conformal Field Theory Characters]<br> | ||
− | ** R. Kedem, T.R. Klassen, B.M. McCoy, E. Melzer, 1993<br> | + | ** R. Kedem, T.R. Klassen, B.M. McCoy, E. Melzer, Physics Letters B Volume 307, Issues 1-2, 10 June 1993, Pages 68-76 <br> |
* http://www.ams.org/mathscinet | * http://www.ams.org/mathscinet |
2010년 5월 22일 (토) 10:27 판
introduction
- unitary
- n
history
encyclopedia
- http://en.wikipedia.org/wiki/
- http://www.scholarpedia.org/
- Princeton companion to mathematics(Companion_to_Mathematics.pdf)
books
- 2010년 books and articles
- http://gigapedia.info/1/
- http://gigapedia.info/1/
- http://www.amazon.com/s/ref=nb_ss_gw?url=search-alias%3Dstripbooks&field-keywords=
[[4909919|]]
articles
- Continued fractions and fermionic representations for characters of M(p,p') minimal models
- A. Berkovich and B.M. McCoy, Letters in Mathematical Physics, 1996
- A. Berkovich and B.M. McCoy, Letters in Mathematical Physics, 1996
- Virasoro character identities from the Andrews-Bailey construction
- Foda, O. and Quano, Y-H. Preprint, hepth/9408086
- Foda, O. and Quano, Y-H. Preprint, hepth/9408086
- Fermionic counting of RSOS-states and Virasoro character formulas for the unitary minimal series M(ν, ν + 1). Exact results.
- A. Berkovich, Nuclear Phys. B 431 (1994), no. 1-2, 315--348, 1994
- A. Berkovich, Nuclear Phys. B 431 (1994), no. 1-2, 315--348, 1994
- Fermionic Sum Representations for Conformal Field Theory Characters
- R. Kedem, T.R. Klassen, B.M. McCoy, E. Melzer, Physics Letters B Volume 307, Issues 1-2, 10 June 1993, Pages 68-76
- R. Kedem, T.R. Klassen, B.M. McCoy, E. Melzer, Physics Letters B Volume 307, Issues 1-2, 10 June 1993, Pages 68-76
- http://www.ams.org/mathscinet
- [1]http://www.zentralblatt-math.org/zmath/en/
- [2]http://arxiv.org/
- http://pythagoras0.springnote.com/
- http://math.berkeley.edu/~reb/papers/index.html
- http://dx.doi.org/
question and answers(Math Overflow)
blogs
experts on the field