"Quantum dilogarithm"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
1번째 줄: 1번째 줄:
 
<h5 style="background-position: 0px 100%; font-size: 1.16em; margin: 0px; color: rgb(34, 61, 103); line-height: 3.42em; font-family: 'malgun gothic',dotum,gulim,sans-serif;">introduction</h5>
 
<h5 style="background-position: 0px 100%; font-size: 1.16em; margin: 0px; color: rgb(34, 61, 103); line-height: 3.42em; font-family: 'malgun gothic',dotum,gulim,sans-serif;">introduction</h5>
 +
 +
* [http://repository.kulib.kyoto-u.ac.jp/dspace/bitstream/2433/64430/1/1172-4.pdf Notes on Construction of the Knot Invariant from Quantum Dilogarithm Function]<br>
  
 
 
 
 
123번째 줄: 125번째 줄:
 
*  Quantum dilogarithm.<br>
 
*  Quantum dilogarithm.<br>
 
** [http://wain.mi.ras.ru/indexrus.html Wadim Zudilin], Preprint, Bonn and Moscow (2006)
 
** [http://wain.mi.ras.ru/indexrus.html Wadim Zudilin], Preprint, Bonn and Moscow (2006)
* Notes on Construction of the Knot Invariant from $\mathrm{O}\mathrm{u}\mathrm{a}\mathrm{n}\mathrm{t}\mathrm{u}\sim \mathrm{m}$ Dilogarithm Function
+
* [http://repository.kulib.kyoto-u.ac.jp/dspace/bitstream/2433/64430/1/1172-4.pdf Notes on Construction of the Knot Invariant from Quantum Dilogarithm Function]
 
* [http://dx.doi.org/10.1023/A:1007364912784 The hyperbolic volume of knots from quantum dilogarithm]<br>
 
* [http://dx.doi.org/10.1023/A:1007364912784 The hyperbolic volume of knots from quantum dilogarithm]<br>
 
** R. M. Kashaev, 1996
 
** R. M. Kashaev, 1996

2011년 5월 18일 (수) 16:05 판

introduction

 

 

quantum plane
  • also called the Weyl algebra
  • noncommutative geometry
  • \(uv=qvu\)

 

 

q-integral (Jackson integral)
  • \(0<q<1\)에 대하여 다음과 같이 정의
    \(\int_0^a f(x) d_q x = a(1-q)\sum_{k=0}^{\infty}q^k f(aq^k )\)
    \(\int_0^{\infty} f(x) d_q x =(1-q)\sum_{k=-\infty}^{\infty}q^k f(aq^k )\)
  • \(q\to 1\) 이면, \(\int_0^a f(x) d_q x \to \int_0^a f(x) dx \)

 

 

quantum dilogarithm

\(\Psi(z)=\prod_{n=0}^{\infty}(1-zq^n)=\sum_{n\geq 0}\frac{(-1)^nq^{n(n-1)/2}}{(1-q)(1-q^2)\cdots(1-q^n)} z^n\)

\(\Psi(z)=\exp(\frac{\operatorname{Li}_{2,q}(z)}{q-1})\)

\(\operatorname{Li}_{2,q}(z) = -\int_0^z{{\ln (1-t)}\over t} d_{q}t \)

\(\operatorname{Li}_2(z) = -\int_0^z{{\ln (1-t)}\over t} dt \)

 

 

asymptotics 
  • \(q=e^{-t}\) and as the t goes 0 (i.e. as q goes to 1)

\(\sum_{n=0}^{\infty}\frac{q^{\frac{A}{2}n^2+cn}}{(q)_n}\sim\exp(\frac{C}{t})\)

where C= sum of Rogers dilogarithms

 

 

quantum 5-term relation

 

 

 

Knot and invariants from quantum dilogarithm
  • [Kashaev1995] 
  • a link invariant, depending on a positive integer parameter N, has been defined via three-dimensional interpretation of the cyclic quantum dilogarithm
  • The construction can be considered as an example ofthe simplicial (combinatorial) version of the three-dimensional TQFT
  • this invariant is in fact a quantum generalization of thehyperbolic volume invariant.
  • It is possible that the simplicialTQFT, defined in terms of the cyclic quantum dilogarithm, can be associated with quantum 2 + 1-dimensional gravity.

 

 

history

 

 

related items

 

 

encyclopedia

 

 

books

 

[[4909919|]]

 

 

articles

 

 

question and answers(Math Overflow)

 

 

blogs

 

 

experts on the field

 

 

links