"Quantum dilogarithm"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
1번째 줄: | 1번째 줄: | ||
− | <h5 style="background-position: 0px 100%; font-size: 1.16em; margin: 0px; color: rgb(34, 61, 103); line-height: 3.42em; font-family: 'malgun gothic',dotum,gulim,sans-serif;">introduction | + | <h5 style="background-position: 0px 100%; font-size: 1.16em; margin: 0px; color: rgb(34, 61, 103); line-height: 3.42em; font-family: 'malgun gothic',dotum,gulim,sans-serif;">introduction</h5> |
* [http://pythagoras0.springnote.com/pages/7978406 양자 다이로그 함수(quantum dilogarithm)] | * [http://pythagoras0.springnote.com/pages/7978406 양자 다이로그 함수(quantum dilogarithm)] | ||
35번째 줄: | 35번째 줄: | ||
* '''[Kashaev1995]'''[http://dx.doi.org/10.1142/S0217732395001526 A link invariant from quantum dilogarithm]<br> | * '''[Kashaev1995]'''[http://dx.doi.org/10.1142/S0217732395001526 A link invariant from quantum dilogarithm]<br> | ||
** Kashaev, R. M., Modern Phys. Lett. A 10 (1995), 1409–1418 | ** Kashaev, R. M., Modern Phys. Lett. A 10 (1995), 1409–1418 | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | <h5>quantum dilogarithm identities</h5> | ||
+ | |||
+ | |||
+ | |||
+ | |||
2011년 10월 5일 (수) 09:31 판
introduction
근사 공식
- \(q=e^{-t}\) and as the t goes 0 (i.e. as q goes to 1)
\(\sum_{n=0}^{\infty}\frac{q^{\frac{A}{2}n^2+cn}}{(q)_n}\sim\exp(\frac{C}{t})\)
여기서 C는 로저스 다이로그 함수 (Roger's dilogarithm) 의 어떤 값에서의 합
Knot and invariants from quantum dilogarithm
- [Kashaev1995]
- a link invariant, depending on a positive integer parameter N, has been defined via three-dimensional interpretation of the cyclic quantum dilogarithm
- The construction can be considered as an example of the simplicial (combinatorial) version of the three-dimensional TQFT
- this invariant is in fact a quantum generalization of the hyperbolic volume invariant.
- It is possible that the simplicialTQFT, defined in terms of the cyclic quantum dilogarithm, can be associated with quantum 2 + 1-dimensional gravity.
- [Kashaev1995]A link invariant from quantum dilogarithm
- Kashaev, R. M., Modern Phys. Lett. A 10 (1995), 1409–1418
quantum dilogarithm identities
- Boson and Fermion summation form
- asymptotic analysis of basic hypergeometric series
- Quantum groups
- Kashaev's volume Conjecture
- Quiver mutations and quantum dilogarithm identities, presentation, Isle of Skye, June 27, 201
- Quantum dilogarithm identities from quiver mutations, video of a talk given at Banff, September 9, 2010.
- Keller, http://arxiv.org/abs/1102.4148
- Kashaev, http://arxiv.org/abs/1104.4630