"Quantum dilogarithm"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
59번째 줄: 59번째 줄:
 
 
 
 
  
 
+
<h5>expositions</h5>
  
* [http://www.math.jussieu.fr/%7Ekeller/publ/QuiverMutQuantDilogHandout.pdf Quiver mutations and quantum dilogarithm identities], presentation, Isle of Skye, June 27, 201
+
* [http://www.math.jussieu.fr/%7Ekeller/publ/QuiverMutQuantDilogHandout.pdf Quiver mutations and quantum dilogarithm identities], presentation, Isle of Skye, June 27, 2011
 
* [http://www.birs.ca/events/2010/5-day-workshops/10w5069/videos Quantum dilogarithm identities from quiver mutations], video of a talk given at Banff, September 9, 2010.
 
* [http://www.birs.ca/events/2010/5-day-workshops/10w5069/videos Quantum dilogarithm identities from quiver mutations], video of a talk given at Banff, September 9, 2010.
  
67번째 줄: 67번째 줄:
  
 
 
 
 
 +
 +
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">articles</h5>
  
 
* Keller, http://arxiv.org/abs/1102.4148
 
* Keller, http://arxiv.org/abs/1102.4148
 
 
 
  
 
* Kashaev, http://arxiv.org/abs/1104.4630
 
* Kashaev, http://arxiv.org/abs/1104.4630

2012년 8월 26일 (일) 13:43 판

introduction

 

 

근사 공식
  • \(q=e^{-t}\) and as the t goes 0 (i.e. as q goes to 1)

\(\sum_{n=0}^{\infty}\frac{q^{\frac{A}{2}n^2+cn}}{(q)_n}\sim\exp(\frac{C}{t})\)

 

여기서 C는 로저스 다이로그 함수 (Roger's dilogarithm) 의 어떤 값에서의 합

 

 

 

Knot and invariants from quantum dilogarithm
  • [Kashaev1995] 
  • a link invariant, depending on a positive integer parameter N, has been defined via three-dimensional interpretation of the cyclic quantum dilogarithm
  • The construction can be considered as an example of the simplicial (combinatorial) version of the three-dimensional TQFT
  • this invariant is in fact a quantum generalization of the hyperbolic volume invariant.
  • It is possible that the simplicialTQFT, defined in terms of the cyclic quantum dilogarithm, can be associated with quantum 2 + 1-dimensional gravity.

 

 

 

quantum dilogarithm identities

 

 

 

 

related items

 

expositions

 

 

articles