"Quantum dilogarithm"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
imported>Pythagoras0 |
imported>Pythagoras0 잔글 (찾아 바꾸기 – “<h5 (.*)">” 문자열을 “==” 문자열로) |
||
1번째 줄: | 1번째 줄: | ||
− | + | ==introduction== | |
* [http://pythagoras0.springnote.com/pages/7978406 양자 다이로그 함수(quantum dilogarithm)] | * [http://pythagoras0.springnote.com/pages/7978406 양자 다이로그 함수(quantum dilogarithm)] | ||
7번째 줄: | 7번째 줄: | ||
− | + | ==근사 공식== | |
* <math>q=e^{-t}</math> and as the t goes 0 (i.e. as q goes to 1)<br> | * <math>q=e^{-t}</math> and as the t goes 0 (i.e. as q goes to 1)<br> | ||
23번째 줄: | 23번째 줄: | ||
− | + | ==Knot and invariants from quantum dilogarithm== | |
* '''[Kashaev1995] '''<br> | * '''[Kashaev1995] '''<br> | ||
50번째 줄: | 50번째 줄: | ||
− | + | ==related items== | |
* [[1 Fermion summation formula - quasi-particle interpretation|Boson and Fermion summation form]]<br> | * [[1 Fermion summation formula - quasi-particle interpretation|Boson and Fermion summation form]]<br> | ||
68번째 줄: | 68번째 줄: | ||
− | + | ==articles== | |
* Keller, http://arxiv.org/abs/1102.4148 | * Keller, http://arxiv.org/abs/1102.4148 | ||
* Kashaev, http://arxiv.org/abs/1104.4630[[분류:개인노트]] | * Kashaev, http://arxiv.org/abs/1104.4630[[분류:개인노트]] |
2012년 10월 28일 (일) 16:45 판
introduction
근사 공식
- \(q=e^{-t}\) and as the t goes 0 (i.e. as q goes to 1)
\(\sum_{n=0}^{\infty}\frac{q^{\frac{A}{2}n^2+cn}}{(q)_n}\sim\exp(\frac{C}{t})\)
여기서 C는 로저스 다이로그 함수 (Roger's dilogarithm) 의 어떤 값에서의 합
Knot and invariants from quantum dilogarithm
- [Kashaev1995]
- a link invariant, depending on a positive integer parameter N, has been defined via three-dimensional interpretation of the cyclic quantum dilogarithm
- The construction can be considered as an example of the simplicial (combinatorial) version of the three-dimensional TQFT
- this invariant is in fact a quantum generalization of the hyperbolic volume invariant.
- It is possible that the simplicialTQFT, defined in terms of the cyclic quantum dilogarithm, can be associated with quantum 2 + 1-dimensional gravity.
- [Kashaev1995]A link invariant from quantum dilogarithm
- Kashaev, R. M., Modern Phys. Lett. A 10 (1995), 1409–1418
quantum dilogarithm identities
- Boson and Fermion summation form
- asymptotic analysis of basic hypergeometric series
- Quantum groups
- Kashaev's volume Conjecture
expositions
- Quiver mutations and quantum dilogarithm identities, presentation, Isle of Skye, June 27, 2011
- Quantum dilogarithm identities from quiver mutations, video of a talk given at Banff, September 9, 2010.
articles
- Keller, http://arxiv.org/abs/1102.4148
- Kashaev, http://arxiv.org/abs/1104.4630