"Quantum dilogarithm"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
imported>Pythagoras0
2번째 줄: 2번째 줄:
  
 
* {{수학노트|url=양자_다이로그_함수(quantum_dilogarithm)}}
 
* {{수학노트|url=양자_다이로그_함수(quantum_dilogarithm)}}
* http://arxiv.org/abs/hep-th/9611117 
+
* {{수학노트|url=양자_다이로그_항등식_(quantum_dilogarithm_identities)}}
 +
* http://arxiv.org/abs/hep-th/9611117
  
 
+
  
 
==근사 공식==
 
==근사 공식==
  
* <math>q=e^{-t}</math> and as the t goes 0 (i.e. as q goes to 1) :<math>\sum_{n=0}^{\infty}\frac{q^{\frac{A}{2}n^2+cn}}{(q)_n}\sim\exp(\frac{C}{t})</math>
+
* <math>q=e^{-t}</math> and as the t goes 0 (i.e. as q goes to 1) :<math>\sum_{n=0}^{\infty}\frac{q^{\frac{A}{2}n^2+cn}}{(q)_n}\sim\exp(\frac{C}{t})</math>
  
 
여기서 C는 [http://pythagoras0.springnote.com/pages/4855791 로저스 다이로그 함수 (Roger's dilogarithm)] 의 어떤 값에서의 합
 
여기서 C는 [http://pythagoras0.springnote.com/pages/4855791 로저스 다이로그 함수 (Roger's dilogarithm)] 의 어떤 값에서의 합
  
 
+
  
 
+
  
 
+
  
==Knot and invariants from quantum dilogarithm==
+
==Knot and invariants from quantum dilogarithm==
  
* '''[Kashaev1995] '''<br>
+
* '''[Kashaev1995] '''
*  a link invariant, depending on a positive integer parameter N, has been defined via three-dimensional interpretation of the cyclic quantum dilogarithm<br>
+
*  a link invariant, depending on a positive integer parameter N, has been defined via three-dimensional interpretation of the cyclic quantum dilogarithm
*  The construction can be considered as an example of the simplicial (combinatorial) version of the three-dimensional TQFT<br>
+
*  The construction can be considered as an example of the simplicial (combinatorial) version of the three-dimensional TQFT
*  this invariant is in fact a quantum generalization of the hyperbolic volume invariant.<br>
+
*  this invariant is in fact a quantum generalization of the hyperbolic volume invariant.
*  It is possible that the simplicialTQFT, defined in terms of the cyclic quantum dilogarithm, can be associated with quantum 2 + 1-dimensional gravity.<br>
+
*  It is possible that the simplicialTQFT, defined in terms of the cyclic quantum dilogarithm, can be associated with quantum 2 + 1-dimensional gravity.
  
* '''[Kashaev1995]'''[http://dx.doi.org/10.1142/S0217732395001526 A link invariant from quantum dilogarithm]<br>
+
* '''[Kashaev1995]'''[http://dx.doi.org/10.1142/S0217732395001526 A link invariant from quantum dilogarithm]
** Kashaev, R. M., Modern Phys. Lett. A 10 (1995), 1409–1418
+
** Kashaev, R. M., Modern Phys. Lett. A 10 (1995), 1409–1418
  
 
+
  
 
+
 
 
 
 
 
 
==quantum dilogarithm identities==
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
==related items==
 
==related items==
  
* [[Fermionic summation formula]]<br>
+
* [[Fermionic summation formula]]
* [[asymptotic analysis of basic hypergeometric series]]<br>
+
* [[asymptotic analysis of basic hypergeometric series]]
* [[quantum groups|Quantum groups]]<br>
+
* [[Kashaev's volume conjecture|Kashaev's volume Conjecture]]
* [[Kashaev's volume conjecture|Kashaev's volume Conjecture]]<br>
 
  
  
 
+
  
 
[[분류:개인노트]]
 
[[분류:개인노트]]

2013년 5월 30일 (목) 02:50 판

introduction


근사 공식

  • \(q=e^{-t}\) and as the t goes 0 (i.e. as q goes to 1) \[\sum_{n=0}^{\infty}\frac{q^{\frac{A}{2}n^2+cn}}{(q)_n}\sim\exp(\frac{C}{t})\]

여기서 C는 로저스 다이로그 함수 (Roger's dilogarithm) 의 어떤 값에서의 합




Knot and invariants from quantum dilogarithm

  • [Kashaev1995]
  • a link invariant, depending on a positive integer parameter N, has been defined via three-dimensional interpretation of the cyclic quantum dilogarithm
  • The construction can be considered as an example of the simplicial (combinatorial) version of the three-dimensional TQFT
  • this invariant is in fact a quantum generalization of the hyperbolic volume invariant.
  • It is possible that the simplicialTQFT, defined in terms of the cyclic quantum dilogarithm, can be associated with quantum 2 + 1-dimensional gravity.



related items