"Quantum dilogarithm"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
imported>Pythagoras0 |
imported>Pythagoras0 |
||
5번째 줄: | 5번째 줄: | ||
* http://arxiv.org/abs/hep-th/9611117 | * http://arxiv.org/abs/hep-th/9611117 | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
==Knot and invariants from quantum dilogarithm== | ==Knot and invariants from quantum dilogarithm== | ||
30번째 줄: | 17번째 줄: | ||
** Kashaev, R. M., Modern Phys. Lett. A 10 (1995), 1409–1418 | ** Kashaev, R. M., Modern Phys. Lett. A 10 (1995), 1409–1418 | ||
− | |||
− | |||
==related items== | ==related items== | ||
44번째 줄: | 29번째 줄: | ||
[[분류:개인노트]] | [[분류:개인노트]] | ||
− | [[ | + | [[분류:research topics]] |
[[분류:Number theory and physics]] | [[분류:Number theory and physics]] | ||
[[분류:dilogarithm]] | [[분류:dilogarithm]] |
2013년 7월 14일 (일) 12:13 판
introduction
Knot and invariants from quantum dilogarithm
- [Kashaev1995]
- a link invariant, depending on a positive integer parameter N, has been defined via three-dimensional interpretation of the cyclic quantum dilogarithm
- The construction can be considered as an example of the simplicial (combinatorial) version of the three-dimensional TQFT
- this invariant is in fact a quantum generalization of the hyperbolic volume invariant.
- It is possible that the simplicialTQFT, defined in terms of the cyclic quantum dilogarithm, can be associated with quantum 2 + 1-dimensional gravity.
- [Kashaev1995]A link invariant from quantum dilogarithm
- Kashaev, R. M., Modern Phys. Lett. A 10 (1995), 1409–1418