"Slater 92"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
1번째 줄: 1번째 줄:
 
==Note==
 
==Note==
  
* [[twisted Chebyshev polynomials and dilogarithm identities|an explanation for dilogarithm ladder]]<br>[[twisted Chebyshev polynomials and dilogarithm identities|twisted Chebyshev polynomials and dilogarithm identities]]<br>
+
* [[twisted Chebyshev polynomials and dilogarithm identities|an explanation for dilogarithm ladder]][[twisted Chebyshev polynomials and dilogarithm identities|twisted Chebyshev polynomials and dilogarithm identities]]
*  Loxton & Lewin<br><math>x, -y, -z^{-1}</math>가 방정식 <math>x^3+3x^2-1=0</math>의 해라고 하자.<br><math>3L(x^3)-9L(x^2)-9L(x)+7L(1)=0</math><br><math>3L(y^6)-6L(y^3)-27L(y^2)+18L(y)+2L(1)=0</math><br><math>3L(z^6)-6L(z^3)-27L(z^2)+18L(z)-2L(1)=0</math><br>
+
*  Loxton & Lewin<math>x, -y, -z^{-1}</math>가 방정식 <math>x^3+3x^2-1=0</math>의 해라고 하자.<math>3L(x^3)-9L(x^2)-9L(x)+7L(1)=0</math><math>3L(y^6)-6L(y^3)-27L(y^2)+18L(y)+2L(1)=0</math><math>3L(z^6)-6L(z^3)-27L(z^2)+18L(z)-2L(1)=0</math>
  
 
 
 
 
11번째 줄: 11번째 줄:
  
 
* [[Slater list|Slater's list]]
 
* [[Slater list|Slater's list]]
*  B(3)<br>
+
*  B(3)
  
 
 
 
 
19번째 줄: 19번째 줄:
 
==Bailey pair 1==
 
==Bailey pair 1==
  
*  Use the folloing<br><math>\delta_n=\frac{(y)_n(z)_n x^n}{y^n z^n}</math>,  <math>\gamma_n=\frac{(x/y;q)_{\infty}(x/z;q)_{\infty}}{(x;q)_{\infty}(x/yz;q)_{\infty}}\frac{(y)_n(z)_n x^n}{(x/y)_{n}(x/z)_{n}y^n z^n}</math><br>
+
*  Use the folloing<math>\delta_n=\frac{(y)_n(z)_n x^n}{y^n z^n}</math>,  <math>\gamma_n=\frac{(x/y;q)_{\infty}(x/z;q)_{\infty}}{(x;q)_{\infty}(x/yz;q)_{\infty}}\frac{(y)_n(z)_n x^n}{(x/y)_{n}(x/z)_{n}y^n z^n}</math>
*  Specialize<br><math>x=q^2, y=-q, z\to\infty</math>.<br>
+
*  Specialize<math>x=q^2, y=-q, z\to\infty</math>.
*  Bailey pair<br><math>\delta_n=(-q)_{n}q^{\frac{n(n+1)}{2}}</math><br><math>\gamma_n=\frac{(-q)_{\infty}}{(q^2)_{\infty}}q^{\frac{n(n+1)}{2}}</math><br>
+
*  Bailey pair<math>\delta_n=(-q)_{n}q^{\frac{n(n+1)}{2}}</math><math>\gamma_n=\frac{(-q)_{\infty}}{(q^2)_{\infty}}q^{\frac{n(n+1)}{2}}</math>
  
 
 
 
 
29번째 줄: 29번째 줄:
 
==Bailey pair 2==
 
==Bailey pair 2==
  
*  Use the following <br><math>\sum_{r=0}^{n}\frac{(1-aq^{2r})(-1)^{r}q^{\frac{1}{2}(r^2+r)}(a)_{r}(c)_{r}(d)_{r}a^{r}}{(a)_{n+r+1}(q)_{n-r}(q)_{r}(aq/c)_{r}(aq/d)_{r}c^{r}d^{r}}=\frac{(aq/cd)_{n}}{(q)_{n}(aq/c)_{n}(aq/d)_{n}}</math><br>
+
*  Use the following <math>\sum_{r=0}^{n}\frac{(1-aq^{2r})(-1)^{r}q^{\frac{1}{2}(r^2+r)}(a)_{r}(c)_{r}(d)_{r}a^{r}}{(a)_{n+r+1}(q)_{n-r}(q)_{r}(aq/c)_{r}(aq/d)_{r}c^{r}d^{r}}=\frac{(aq/cd)_{n}}{(q)_{n}(aq/c)_{n}(aq/d)_{n}}</math>
*  Specialize<br><math>a=q,c=-q,d=\infty</math><br>
+
*  Specialize<math>a=q,c=-q,d=\infty</math>
*  Bailey pair<br><math>\alpha_{0}=1</math>, <math>\alpha_{n}=(-1)^{n}q^{n^2}(1-q^{2n+1})/(1-q)</math><br><math>\beta_n=\sum_{r=0}^{n}\frac{\alpha_r}{(x)_{n-r}(q)_{n+r}}=\sum_{r=0}^{n}\frac{\alpha_r}{(q^{2})_{n-r}(q)_{n+r}}=\frac{1}{(q)_{n}(-q)_{n}}</math><br>
+
*  Bailey pair<math>\alpha_{0}=1</math>, <math>\alpha_{n}=(-1)^{n}q^{n^2}(1-q^{2n+1})/(1-q)</math><math>\beta_n=\sum_{r=0}^{n}\frac{\alpha_r}{(x)_{n-r}(q)_{n+r}}=\sum_{r=0}^{n}\frac{\alpha_r}{(q^{2})_{n-r}(q)_{n+r}}=\frac{1}{(q)_{n}(-q)_{n}}</math>
  
 
 
 
 
39번째 줄: 39번째 줄:
 
==Bailey pair ==
 
==Bailey pair ==
  
*  Bailey pairs<br><math>\delta_n=(-q)_{n}q^{\frac{n(n+1)}{2}}</math><br><math>\gamma_n=\frac{(-q)_{\infty}}{(q^2)_{\infty}}q^{\frac{n(n+1)}{2}}</math><br><math>\alpha_{n}=(-1)^{n}q^{n^2}(1-q^{2n+1})/(1-q)</math><br><math>\beta_n=\frac{1}{(q)_{n}(-q)_{n}}</math><br>
+
*  Bailey pairs<math>\delta_n=(-q)_{n}q^{\frac{n(n+1)}{2}}</math><math>\gamma_n=\frac{(-q)_{\infty}}{(q^2)_{\infty}}q^{\frac{n(n+1)}{2}}</math><math>\alpha_{n}=(-1)^{n}q^{n^2}(1-q^{2n+1})/(1-q)</math><math>\beta_n=\frac{1}{(q)_{n}(-q)_{n}}</math>
  
 
 
 
 
51번째 줄: 51번째 줄:
 
 
 
 
  
* [http://www.research.att.com/%7Enjas/sequences/index.html The On-Line Encyclopedia of Integer Sequences]<br>
+
* [http://www.research.att.com/%7Enjas/sequences/index.html The On-Line Encyclopedia of Integer Sequences]
 
** http://www.research.att.com/~njas/sequences/?q=
 
** http://www.research.att.com/~njas/sequences/?q=
  
105번째 줄: 105번째 줄:
 
 
 
 
  
* [[2010년 books and articles]]<br>
+
* [[2010년 books and articles]]
 
* http://gigapedia.info/1/
 
* http://gigapedia.info/1/
 
* http://gigapedia.info/1/
 
* http://gigapedia.info/1/

2020년 11월 13일 (금) 00:39 판

Note

 

 

type of identity

 

 

Bailey pair 1

  • Use the folloing\(\delta_n=\frac{(y)_n(z)_n x^n}{y^n z^n}\),  \(\gamma_n=\frac{(x/y;q)_{\infty}(x/z;q)_{\infty}}{(x;q)_{\infty}(x/yz;q)_{\infty}}\frac{(y)_n(z)_n x^n}{(x/y)_{n}(x/z)_{n}y^n z^n}\)
  • Specialize\(x=q^2, y=-q, z\to\infty\).
  • Bailey pair\(\delta_n=(-q)_{n}q^{\frac{n(n+1)}{2}}\)\(\gamma_n=\frac{(-q)_{\infty}}{(q^2)_{\infty}}q^{\frac{n(n+1)}{2}}\)

 

 

Bailey pair 2

  • Use the following \(\sum_{r=0}^{n}\frac{(1-aq^{2r})(-1)^{r}q^{\frac{1}{2}(r^2+r)}(a)_{r}(c)_{r}(d)_{r}a^{r}}{(a)_{n+r+1}(q)_{n-r}(q)_{r}(aq/c)_{r}(aq/d)_{r}c^{r}d^{r}}=\frac{(aq/cd)_{n}}{(q)_{n}(aq/c)_{n}(aq/d)_{n}}\)
  • Specialize\(a=q,c=-q,d=\infty\)
  • Bailey pair\(\alpha_{0}=1\), \(\alpha_{n}=(-1)^{n}q^{n^2}(1-q^{2n+1})/(1-q)\)\(\beta_n=\sum_{r=0}^{n}\frac{\alpha_r}{(x)_{n-r}(q)_{n+r}}=\sum_{r=0}^{n}\frac{\alpha_r}{(q^{2})_{n-r}(q)_{n+r}}=\frac{1}{(q)_{n}(-q)_{n}}\)

 

 

Bailey pair 

  • Bailey pairs\(\delta_n=(-q)_{n}q^{\frac{n(n+1)}{2}}\)\(\gamma_n=\frac{(-q)_{\infty}}{(q^2)_{\infty}}q^{\frac{n(n+1)}{2}}\)\(\alpha_{n}=(-1)^{n}q^{n^2}(1-q^{2n+1})/(1-q)\)\(\beta_n=\frac{1}{(q)_{n}(-q)_{n}}\)

 

 

q-series identity

\(\sum_{n=0}^{\infty}\frac{(q^3;q^3)_{n}q^{n(n+1)}}{ (q)_{n}(q;q^{2})_n(q^2;q^2)_{n}}=\frac{(q^{9};q^{27})_{\infty}(q^{18};q^{27})_{\infty}(q^{27};q^{27})_{\infty}}{(q)_{\infty}}\)

 

 

 

 

Bethe type equation (cyclotomic equation)

Let \(\sum_{n=0}^{\infty}\frac{q^{n(an+b)/2}}{ \prod_{j=1}^{r}(q^{c_j};q^{d_j})_n^{e_j}}=\sum_{N=0}^{\infty} a_N q^{N}\).

Then \(\prod_{j=1}^{r}(1-x^{d_j})^{e_j}=x^a\)  has a unique root \(0<\mu<1\). We get

\(\log^2 a_N \sim 4N\sum_{j=1}^{r}\frac{e_j}{d_j}L(1-\mu^{d_j})\)

 

a=2,d_1=1,d_2=2,d_3=2,e_1=e_2=e_3=1

 

\(\frac{(1-x)(1-x^2)^2}{(1-x^3)}=x^2\)

\(x^3+3x^2-1=0\)

\(x, -y, -z^{-1}\)가 방정식 의 해 http://www.wolframalpha.com/input/?i=x^3%2B3x^2-1%3D0

 

 

dilogarithm identity

\(L(x^3)-3L(x^2)-3L(x)=-\frac{7}{3}L(1)\)

 

 

related items

 

 

 

books

 


 

 

articles